Abstract:
Described herein are processes related to discovering and establishing suitable multi-hop communication paths for (endpoint) user equipments (UEs). A network-initiated discovery and path selection processes may utilize periodically transmitted reference signals along with optional assistance information. A network node, such an eNodeB, and other relaying-capable nodes, such as relay UEs, may transmit periodic reference signals. Based on these transmitted reference signals and optional assistance information, the relay UEs and/or an endpoint node (e.g., the eNodeB or the endpoint UE) may make a selection decision for previous hop paths for communication. The endpoint UE or the eNodeB may make the selection decision for the end-to-end path in order to provide coverage extension for the end UE using multi-hop transmission paths.
Abstract:
Disclosed herein are apparatuses, systems, and methods for creating and editing user equipment (UE) mobility information. During a radio resource control idle (RRC_IDLE) state, a plurality of cell reselections are logged into a mobility report, and each logged cell reselection includes a cell identification (Cell ID) and a Time of Stay (ToS) duration. The mobility report is edited to remove one or more logged cell reselections based, at least in part, on identifying logged cell reselections having duplicate Cell IDs and/or identifying logged cell reselections having a ToS duration lower than a threshold value. The edited mobility report is transmitted to an evolved Universal Terrestrial Radio Access Network (E-UTRAN) in response to the UE transitioning from the RRC_IDLE state to a radio resource control connected (RRC_CONNECTED) state.
Abstract:
Technology for maintaining connectivity between a user equipment (UE) and a secondary (e)NodeB when connectivity is lost between the UE and a primary (e)NodeB is disclosed. The UE can start a first timer for monitoring a connection between the UE and the primary (e)NodeB. The UE can start a second timer for monitoring a connection between the UE and the secondary (e)NodeB. The UE can detect radio link failure (RLF) between the UE and the primary (e)NodeB after expiry of the first timer at the UE. The UE can maintain the connection with the secondary (e)NodeB while the second timer is unexpired, wherein the secondary (e)NodeB is configured to behave like the primary (e)NodeB or become the primary (e)NodeB depending on a capability of the UE and for a selected period of time after the connectivity between the UE and the primary (e)NodeB is lost.
Abstract:
An embodiment for user equipment that receives a plurality of measurement gap repetition patterns from a network. Each measurement gap repetition pattern may be assigned to a different frequency of the network. The plurality of measurement gap repetition patterns may include skipping measurement patterns. Further embodiments may include the user equipment receiving a repetition period in a measurement object frame or receiving a plurality of measurement gap repetition patterns in which the measurement gaps are non-colliding with measurement gaps of other repetition patterns assigned to the user equipment.
Abstract:
A user equipment device (UE) comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals with one or more nodes of a radio access network; and processing circuitry. The processing circuitry is configured to receive system information via the network, wherein the system information indicates cell specific priority and frequency priority; identify candidate cells that have a cell specific priority that is higher than a cell priority of the current serving cell, have a frequency priority that is higher than a frequency priority of a current serving frequency, and satisfy a cell suitability criterion; and determine a candidate cell from the identified candidate cells to replace the current serving cell for communicating with the network.
Abstract:
Systems, methods, and device for adjusting an operation time of a radio link failure timer are disclosed herein. User equipment (UE) may be configured to communicatively couple to an evolved Universal Terrestrial Radio Access Network (E-UTRAN). The UE use different radio link failure timer parameters depending on the speed of the UE. The radio link failure timer may run for a longer time for rapidly moving UEs and run for a shorter time for slowly moving UEs. In an embodiment, the UE may scale the radio link failure timer by a scaling factor. In another embodiment, the UE may include multiple radio link failure timers for different speeds. The radio link failure timer parameters for each speed may be specified by the E-UTRAN in a one-to-one communication. The E-UTRAN may determine which parameters to use for each UE based on characteristics of the UE.
Abstract:
Embodiments of user equipment (UE) and method for handover enhancement using a scaled time-to-trigger (TTT) and a time-of-stay are generally described herein. In some embodiments, the TTT is scaled based on at least one of a measured reference signal received quality (RSRQ) value of a serving cell and a time-of-stay in the serving cell.
Abstract:
Techniques for enabling dual-connectivity in LTE systems for terminals with only single uplink component carrier capability are described. Dual connectivity refers to a terminal having serving cells from two base stations. In one technique, the terminal transmits to macro and small cells using time division multiplexing. In another, the terminal transmits to one cell only, either the macro cell or the small cell.
Abstract:
Systems and methods for improved inter-frequency measurement are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may determine a measurement pattern indicating when the UE should perform inter-frequency measurements. The measurement pattern may be selected such that the UE performs measurements more often than once per measurement cycle. The measurement pattern may be selected to balance timing requirements for the UE with increased power consumption that may result from more frequent measurements. The eNB may determine the measurement pattern based on an estimate of UE speed and a number of frequencies to be monitored. A default pattern may be used if the UE speed and/or number of frequencies do not exceed predetermined thresholds.
Abstract:
Systems and methods are provided for a network to indicate beamforming information to user equipment (UE) for identification and measurement of reference signals. For example, a network may indicate whether all the reference signals are beamformed or not, or which reference signals are using the same transmission beamforming on the time domain, the frequency domain, or both time and frequency domains. In other embodiments, a network may indicate combining or averaging information to a UE.