Abstract:
A printed circuit board (PCB) includes a plurality of layers disposed at different depths of the PCB, circuit components disposed at different layers of the PCB, and a plurality of temperature measurement sensors located at one or more layers of the PCB, where each temperature measurement sensor is associated with a corresponding circuit component. A measured temperature is obtained at an embedded temperature measurement sensor located at an embedded layer within the PCB, and the measured temperature is correlated with an electrical property of an embedded circuit component located at the same embedded layer within the PCB as the embedded temperature measurement sensor. A plurality of moisture measurement sensors can also be located at one or more layers of the PCB to facilitate a measured moisture with an electrical property of an embedded circuit component.
Abstract:
A conductive signal transmission structure for an electronic device (e.g., a printed circuit board of an electronic device) includes a copper material and a graphene layer disposed within the copper material at a depth below a surface of the structure. The depth of the graphene layer is further within a skin depth region of the structure when a transmission signal applied to the conductive signal transmission structure has a signal speed of at least 112 Gbps.
Abstract:
In one embodiment, a battery backup unit (BBU) cut-off and recharge circuit includes: a first transistor, a power entry connection connected to a main power supply, where power from the power entry connection flows to application circuits for an electronic device, and the first transistor is positioned between a BBU and the power entry connection, and a microcontroller, where the microcontroller is operative to: detect a loss of power from the main power supply, turn on the first transistor to enable the BBU to discharge through the power entry connection to application circuits, detect a status of charge (SOC) for the BBU, and upon detecting that the SOC is under a predefined threshold, set the BBU cut-off and recharge circuit to a lockdown state by turning off the first transistor.
Abstract:
A structure includes a first copper layer and a first carbon layer applied directly to a surface of the first copper layer, a second copper layer and a second carbon layer applied directly to a surface of the second copper layer, and an insulating core disposed between the first and second copper layers. Each of the first carbon layer and the second carbon layer faces toward and directly contacts the insulating core. The structure provides electrical power to a component of an electronic device.
Abstract:
A power plane structure for a printed circuit board includes a copper layer, and a carbon layer applied directly to a surface of the copper layer. The carbon layer can include graphite or graphene. In additional embodiments, a duplicate power plane structure for a printed circuit board includes two power planes separated by an insulating core, each power plane including a copper layer and a carbon layer applied directly to a surface of the copper layer.
Abstract:
A printed circuit board (PCB) includes a plurality of layers disposed at different depths of the PCB, circuit components disposed at different layers of the PCB, and a plurality of temperature measurement sensors located at one or more layers of the PCB, where each temperature measurement sensor is associated with a corresponding circuit component. A measured temperature is obtained at an embedded temperature measurement sensor located at an embedded layer within the PCB, and the measured temperature is correlated with an electrical property of an embedded circuit component located at the same embedded layer within the PCB as the embedded temperature measurement sensor. A plurality of moisture measurement sensors can also be located at one or more layers of the PCB to facilitate a measured moisture with an electrical property of an embedded circuit component.
Abstract:
In one embodiment, a battery backup unit (BBU) cut-off and recharge circuit includes: a first transistor, a power entry connection connected to a main power supply, where power from the power entry connection flows to application circuits for an electronic device, and the first transistor is positioned between a BBU and the power entry connection, and a microcontroller, where the microcontroller is operative to: detect a loss of power from the main power supply, turn on the first transistor to enable the BBU to discharge through the power entry connection to application circuits, detect a status of charge (SOC) for the BBU, and upon detecting that the SOC is under a predefined threshold, set the BBU cut-off and recharge circuit to a lockdown state by turning off the first transistor.
Abstract:
In some implementations, a method includes analyzing an amount of data communicated by a set of network interfaces. The data communicated by the set of network interfaces is processed by a set of functional units and a set of queues includes the data communicated by the set of network interfaces. The method also includes activating a first functional unit of the set of functional units when a first size of a first queue of the set of queues is above a first threshold. The method further includes deactivating the first functional unit of the set of functional units when the first size of the first queue of the set of queues is below a second threshold. The method further includes causing the data to be forward to one or more active functional units via a data interconnect coupled to the set of network interfaces and the set of functional units.
Abstract:
A methodology is described such that when a brownout condition is being experienced by a network node, the network node may autonomously notify the adjacent nodes to reroute the traffic for different classes of service based on programmable low voltage thresholds. The present approach helps lower transit traffic disruption while providing a framework to give preferential treatment to high priority traffic traversing the node.