Abstract:
This application discloses a sub-pixel rendering method, and relates to the field of displaying. It is capable of making improvement with respect to the problem of distortion in the boundary region of the displayed image while ensuring a relatively high resolution of the display. The sub-pixel rendering method comprises: receiving a digital image; dividing, according to color values of image pixels in the digital image, the image pixels into boundary region pixels and continuous region pixels; generating a plurality of screen pixels on a screen, each screen pixel at least including one red sub-pixel, one blue sub-pixel, and one green sub-pixel, one of the plurality of screen pixels being used for correspondingly displaying one of the image pixels; wherein adjacent screen pixels for displaying the continuous region pixels share sub-pixels, and each screen pixel for displaying the boundary region pixels exclusively uses its sub-pixels.
Abstract:
A display device and a method of adjusting backlight brightness of the display device are provided. The method includes converting original RGB signals of each pixel to corresponding RGBW signals; determining the color and original brightness value of each pixel based on the gray value ratio of the original RGB signals of each pixel; determining the backlight brightness value of each pixel based on the color of each pixel after the original RGB signals being converted; and performing weighted average calculation on the backlight brightness values of each pixel after the signals being converted, so as to obtain a whole backlight brightness adjustment value of all pixels.
Abstract:
An organic light-emitting diode display unit, a driving method thereof and a display device are disclosed. At least part of pixel units are pixel units each with a stacked structure; each pixel unit with the stacked structure includes two adjacent subpixel unit stacked groups; and each subpixel unit stacked group includes at least two subpixel units which have different emitting colors and are stacked and insulated from each other. During display of different image frames, each subpixel unit stacked group in each pixel unit with the stacked structure can display gray-scale effect of at least two colors based on applied signals. Compared with an approach that each subpixel unit can only display gray-scale effect of only one color for different image frames, the display effect can be improved.
Abstract:
The present invention provides a display panel and a display method thereof, and a display device. The display panel comprises a plurality of circulation units, wherein each circulation unit is composed of one sub-pixel array or is composed of a plurality of sub-pixel arrays aligned in a row or column direction, and each sub-pixel array is composed of six sub-pixels arranged in two rows and three columns, wherein the six sub-pixels of each sub-pixel array include three color sub-pixels and three compensation sub-pixels, the three color sub-pixels include one red sub-pixel, one green sub-pixel and one blue sub-pixel, the three compensation sub-pixels are different from one another in color, and the sub-pixels with the same color are not adjacent to each other in the row direction and the column direction.
Abstract:
A display substrate and a driving method thereof and a display device are provided. The display substrate includes two types of pixel rows arranged alternately and repeatedly. In one type of pixel row, a second sub-pixel, a third sub-pixel, a second sub-pixel, a first sub-pixel and a third sub-pixel are arranged successively and repeatedly. In the other type of pixel row, a third sub-pixel, a first sub-pixel, a second sub-pixel, a third sub-pixel and a second sub-pixel are arranged successively and repeatedly. A center line of any sub-pixel in a column direction in a pixel row does not coincide with a center line of any sub-pixel in the column direction in an adjacent pixel row.
Abstract:
A display substrate, a driving method and a display device are described. The display substrate includes pixel groups that are repeatedly arranged. Each pixel group includes two first sub-pixels, two second sub-pixels, and two third sub-pixels. A first sub-pixel, a second sub-pixel, and a third sub-pixel are sequentially arranged in a first pixel row of each pixel group. Another third sub-pixel, another first sub-pixel, and another second sub-pixel are sequentially arranged in a second pixel row of each pixel group. A center line of any sub-pixel of the first pixel row and a center line of any sub-pixel of the second pixel row extend in a column direction and do not coincide with each other. The display substrate enables the display device to achieve a higher display resolution with a lower physical resolution.
Abstract:
A pixel arrangement structure according to the present disclosure may include pixel units parallel to each other. The pixel units each includes a plurality of first pixels and second pixels spaced from each other. The first pixels each include a first sub-pixel located in a first row, a second sub-pixel located in a second row, and a third sub-pixel located in third and fourth rows. The second pixels each include a third sub-pixel located in the first and second rows, a first sub-pixel located in the third row, and a second sub-pixel located in the fourth row. The first sub-pixels and second sub-pixels are arranged horizontally, while the third sub-pixels are arranged longitudinally.
Abstract:
A pixel driving circuit includes a driving sub-circuit, a signal writing sub-circuit, a compensation sub-circuit, a light-emitting control sub-circuit and an initialization sub-circuit. The signal writing sub-circuit is configured to write a voltage of a data signal terminal into the driving sub-circuit as a data voltage. The light-emitting control sub-circuit is configured to, in conjunction with the driving sub-circuit, drive a light-emitting device to emit light. The initialization sub-circuit is configured to transmit the voltage from the data signal terminal to the compensation sub-circuit as a reset voltage. The compensation sub-circuit is configured to transmit the reset voltage from the initialization sub-circuit to the driving sub-circuit to reset the driving sub-circuit.
Abstract:
A digital exposure apparatus includes a lens array, the lens array at least including a first lens unit and a second lens unit, a light transposition assembly arranged on an exit light path of the second lens unit, and the light transposition assembly being used for controlling a light exiting from the second lens unit to be transposed with respect to an exposure direction of the digital exposure apparatus. When the digital exposure apparatus is used for exposure, a light passing through the first lens unit and a light penetrating through the second lens unit are needed to expose the same position for multiple times.
Abstract:
Provided is a touch display substrate. The touch display substrate includes a base substrate, including a display region and a non-display region; a plurality of touch electrodes disposed in the display region; and a plurality of signal transmission circuits, a plurality of first control lines, a plurality of second control lines, a target signal line, and a plurality of touch signal lines that are disposed in the non-display region.