Abstract:
In some embodiments, the semiconductor process apparatus comprises a conductive support comprising mesh, a conductive shaft comprising a conductive rod, and a plurality of connection elements. The plurality of connection elements are coupled to the mesh in parallel and are connected to the rod at a single junction. The plurality of connection elements help spread RF current, reducing localized heating in the substrate, resulting in a more uniform film deposition. Additionally, using connection elements that are merged and coupled to a single RF rod allow for the rod to be made of materials that can conduct RF current at lower temperatures.
Abstract:
The present disclosure generally relates to processing chamber seasoning layers having a graded composition. In one example, the seasoning layer is a boron-carbon-nitride (BCN) film. The BCN film may have a greater composition of boron at the base of the film. As the BCN film is deposited, the boron concentration may approach zero, while the relative carbon and nitrogen concentration increases. The BCN film may be deposited by initially co-flowing a boron precursor, a carbon precursor, and a nitrogen precursor. After a first period of time, the flow rate of the boron precursor may be reduced. As the flow rate of boron precursor is reduced, RF power may be applied to generate a plasma during deposition of the seasoning layer.
Abstract:
Implementations disclosed herein generally relate to systems and methods of protecting a substrate support in a process chamber from cleaning fluid during a cleaning process. The method of cleaning the process chamber includes positioning in the process chamber a cover substrate above a substrate support and a process kit that separates a purge volume from a process volume. The method of cleaning includes flowing a purge gas in the purge volume to protect the substrate support and flowing a cleaning fluid to a process volume above the cover substrate, flowing the cleaning fluid in the process volume to an outer flow path, and to an exhaust outlet in the chamber body. The purge volume is maintained at a positive pressure with respect to the process volume to block the cleaning fluid from the purge volume.
Abstract:
The present disclosure relates to a semiconductor processing apparatus. The processing chamber includes a chamber body and lid defining an interior volume, a substrate support disposed in the interior volume and a showerhead assembly disposed between the lid and the substrate support. The showerhead assembly includes a faceplate configured to deliver a process gas to a processing region defined between the showerhead assembly and the substrate support and a underplate positioned above the faceplate, defining a first plenum between the lid and the underplate, the having multiple zones, wherein each zone has a plurality of openings that are configured to pass an amount of inert gas from the first plenum into a second plenum defined between the faceplate and the underplate, in fluid communication with the plurality of openings of each zone such that the inert gas mixes with the process gas before exiting the showerhead assembly.
Abstract:
A method and apparatus for processing a substrate are provided. The apparatus includes a pedestal and rotation member, both of which are moveably disposed within a processing chamber. The rotation member is adapted to rotate a substrate disposed in the chamber. The substrate may be supported by an edge ring during processing. The edge ring may selectively engage either the pedestal or the rotation member. In one embodiment, the edge ring engages the pedestal during a deposition process and the edge ring engages the rotation member during rotation of the substrate. The rotation of the substrate during processing may be discrete or continuous.
Abstract:
Embodiments of a semiconductor processing chamber described herein include a substrate support, a source of radiant energy opposite the substrate support, a window between the source of radiant energy and the substrate support, a detector sensitive to the radiant energy positioned to detect the radiant energy transmitted by the window, and a detector sensitive to radiation emitted by the substrate positioned to detect radiation emitted by the substrate. The chamber may also include a showerhead. The substrate support may be between the detectors and the window. A second radiant energy source may be included to project energy through the window to a detector. The second radiant energy source may also be located proximate the first radiant energy source and the detectors.
Abstract:
Embodiments of the present disclosure provide apparatus and methods for improving process uniformity. Particularly, embodiments of the present disclosure provide a rotatable temperature controlled substrate support for a semiconductor processing chamber. The rotatable temperature controlled substrate support includes one or more heating elements, one or more temperature sensors and cooling channels for circulating a cooling/heating fluid in the rotatable temperature controlled substrate support. One embodiment of the present disclosure includes a thermocouple extension assembly for extending cold junctions of the thermocouple in the substrate support away from the substrate support. The thermocouple extension assembly includes extension cords formed from materials matching with the materials of thermocouple.
Abstract:
The present disclosure relates to cleaning assemblies, components thereof, and methods associated therewith for substrate processing chambers. In one example, a method includes positioning a pedestal disposed in a substrate processing chamber in a first vertical position for a first time period, directing cleaning fluid into the internal volume of the substrate processing chamber located above the faceplate, diverting a portion of the cleaning fluid to the distribution ring and into the internal volume located below the faceplate by opening up the isolation valve, and positioning the pedestal in one or more additional vertical positions while the isolation valve is opened, the one or more additional vertical positions being different than the first vertical position.
Abstract:
Embodiments described herein provide an apparatus for improving deposition uniformity by improving plasma profile using a tri-cut chamber liner. The apparatus also includes a lid assembly having a split process stack for reducing downtime and a bottom heater support for more efficient heating of chamber walls.
Abstract:
Aspects of the present disclosure relate generally to isolator devices, components thereof, and methods associated therewith for substrate processing chambers. In one implementation, a substrate processing chamber includes an isolator ring disposed between a pedestal and a pumping liner. The isolator ring includes a first surface that faces the pedestal, the first surface being disposed at a gap from an outer circumferential surface of the pedestal. The isolator ring also includes a second surface that faces the pumping liner and a protrusion that protrudes from the first surface of the isolator ring and towards the outer circumferential surface of the pedestal. The protrusion defines a necked portion of the gap between the pedestal and the isolator ring.