Abstract:
An acoustic device such as a microphone or speaker is positioned with and coupled to a housing to connect an acoustic port of the acoustic device with an external opening of the housing. A reservoir is connected to the external opening via a bleed channel. The bleed channel may be less resistive to liquid ingress than the acoustic port. As such, the reservoir and bleed channel may redirect liquid from the external opening away from the acoustic port. In some implementations, the reservoir and/or the bleed channel may be defined by one or more acoustically permeable barriers such as meshes that cover the acoustic port, compressible materials such as foams that form a perimeter around the acoustic port, and/or adhesive layers that couple the acoustic device, the housing, and/or one or more other components.
Abstract:
A method of improving voice quality in a mobile device starts by receiving acoustic signals from microphones included in earbuds and the microphone array included on a headset wire. The headset may include the pair of earbuds and the headset wire. An output from an accelerometer that is included in the pair of earbuds is then received. The accelerometer may detect vibration of the user's vocal chords filtered by the vocal tract based on vibrations in bones and tissue of the user's head. A spectral mixer included in the mobile device may then perform spectral mixing of the scaled output from the accelerometer with the acoustic signals from the microphone array to generate a mixed signal. Performing spectral mixing includes scaling the output from the inertial sensor by a scaling factor based on a power ratio between the acoustic signals from the microphone array and the output from the inertial sensor. Other embodiments are also described.
Abstract:
A method performed by an in-ear headphone. Coupled to the in-ear headphone is a first ear tip that is inserted into an ear canal of a user. The method obtains an audio signal from an audio source device paired with the in-ear headphone and uses the signal to drive a speaker of the headphone to output a sound into the ear canal. The method obtains a microphone signal that is responsive to the outputted sound. The method notifies the user to replace the first ear tip with a second ear tip in response to a parameter associated with the microphone signal being less than a threshold.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
Intra-concha earphones are disclosed. In an embodiment, an intra-concha earphone includes a housing having a rear space divided into a back volume, a bass duct, and a vent chamber between a driver and a rear wall. The vent chamber may be acoustically coupled with the back volume through both an acoustic port and the bass duct. Furthermore, the vent chamber may be acoustically coupled with a surrounding environment through a vent port, which may be a sole acoustic opening in the rear wall. Thus, sound emitted by the driver may propagate through the acoustic port and the bass duct to meet in the vent chamber before being discharged through the vent port to the surrounding environment. Other embodiments are also described and claimed.
Abstract:
A headphone can include plurality of exterior microphones, that generates corresponding exterior microphone signals, an accelerometer that generates an accelerometer signal; and an interior microphone, not directly exposed to the environment, that generates an interior microphone signal. A processor of the headphone can be configured to generate an audio signal containing voice of a user, based on a) the accelerometer signal, b) the interior microphone signal, and c) the plurality of exterior microphone signals.
Abstract:
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.