Abstract:
Aspects of the invention include methods and devices for inserting data and pilot symbols into Orthogonal Frequency Division Multiplexing (OFDM) frames having a time domain and a frequency domain. A method involves inserting in at least one zone of a first type a two dimensional array of data and pilot symbols in time and frequency and inserting in at least one zone of a second type a two dimensional array of data and pilot symbols in time and frequency. In some implementations the zone of the first type comprises common pilot symbols that can be detected by all receivers receiving the OFDM frame. In some implementations the zone of the second type comprises dedicated pilot symbols that are only detectable by a receiver that is aware of pre-processing used to encode the dedicated pilot symbols.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
Abstract:
A method and apparatus are provided for performing acquisition, synchronization and cell selection within an MIMO-OFDM communication system. A coarse synchronization is performed to determine a searching window. A fine synchronization is then performed by measuring correlations between subsets of signal samples, whose first signal sample lies within the searching window, and known values. The correlations are performed in the frequency domain of the received signal. In a multiple-output OFDM system, each antenna of the OFDM transmitter has a unique known value. The known value is transmitted as pairs of consecutive pilot symbols, each pair of pilot symbols being transmitted at the same subset of sub-carrier frequencies within the OFDM frame.
Abstract:
A system and method for transmitting high speed data on fixed rate and for variable rate channels. The system and method provides the flexibility of adjusting the data rate, the coding rate, and the nature of individual retransmissions. Further, the system and method supports partial soft combining of retransmitted data with previously transmitted data, supports parity bit selection for successive retransmissions, and supports various combinations of data rate variations, coding rate variations, and partial data transmissions.
Abstract:
Soft handoff in an OFDMA system is disclosed. If the pilot signal strength for a base station exceeds the defined threshold, the base station is added to an active set list. Subcarriers in a plurality of orthogonal frequency division multiplexing (OFDM) symbols are divided and allocated into subchannels. The OFDM symbols are divided and multiplexed. A soft handoff zone with a first dimension of the subchannels and a second dimension of the divided and multiplexed OFDM symbols is defined. The soft handoff zone has subcarriers with a subchannel definition, for example, an identical permutation.
Abstract:
Systems and methods are disclosed herein for an enhanced Multimedia Broadcast Multicast Service (MBMS) in a wireless communications network. In one embodiment, a number of base stations in a MBMS zone, or broadcast region, accommodate both Spatial Multiplexing (SM) enabled user elements and non-SM enabled user elements. In another embodiment, a number of base stations form a MBMS zone, or broadcast region, where the MBMS zone is sub-divided into an SM zone and a non-SM zone. In another embodiment, the wireless communications network includes multiple MBMS zones. For each MBMS zone, base stations serving the MBMS zone transmit an MBMS zone identifier (ID) for the MBMS zone. The MBMS zone ID may be used by a user element for decoding and/or to determine when to perform a handoff from one MBMS zone to another.
Abstract:
Security in wireless communication networks that employ relay stations to facilitate communications between base stations and mobile stations is enhanced. In one embodiment, resource information provided to one or more relay stations from a base station or another relay station is encrypted prior to being delivered to the one or more relay stations. Only authorized relay stations are allocated an appropriate key necessary to decrypt the resource information. As such, only appropriate relay stations are able to access and use the resource information to effect communications directly or indirectly between the base stations and the mobile stations. In certain embodiments, the resource information is delivered between the various base and relay stations using either unicast or multicast delivery techniques.
Abstract:
Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
Abstract:
Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
Abstract:
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.