Abstract:
A method of performing an assay of a response of two or more cell types to a test compound, including: providing a device for monitoring cell-substrate impedance, adding at least two different cell types to the device; adding at least one test compound to form at least two test compound wells; providing at least two control wells; monitoring impedance of the at least two test compound wells and of the at least two control wells at three or more time points after adding the at least one test compound; and analyzing measured impedance from the at least two test compound wells and from the at least two control wells at the three or more time points to obtain information on the response of the different cell types to the at least one test compound.
Abstract:
Use of cell-substrate impedance based methods for screening for agonists of G-Protein Coupled Receptors (GPCRs) or inhibitors of a Receptor Tyrosine Kinases (RTKs), identifying compounds that affect GPCR or RTK pathways, validating molecular targets involved in a GPCR or RTK signaling pathways, monitoring dose-dependent functional activation of GPCR or RTK; determining desensitization of a GPCR and identifying a compound capable of affecting RTK activity in cancer cell proliferation.
Abstract:
A method of performing an assay of a response of two or more cell types to a test compound, including: providing a device for monitoring cell-substrate impedance, adding at least two different cell types to the device; adding at least one test compound to form at least two test compound wells; providing at least two control wells; monitoring impedance of the at least two test compound wells and of the at least two control wells at three or more time points after adding the at least one test compound; and analyzing measured impedance from the at least two test compound wells and from the at least two control wells at the three or more time points to obtain information on the response of the different cell types to the at least one test compound.
Abstract:
The present disclosure provides pharmaceutical compounds, compositions and methods, especially as they are related to compositions and methods for the treatment of tumors and related diseases related to the dysregulation of kinase (such as EGFR (including HER), Alk, PDGFR, but not limited to) pathways.
Abstract:
A method of identifying a therapeutic compound for treating cancer in a human subject, the method including: providing a device that measures cell-substrate impedance; culturing cancer cells in the at least two wells, wherein the cancer cells are obtained from a human subject and have a receptor tyrosine kinase (RTK) pathway; adding to a first well a proposed therapeutic compound that affects an RTK pathway and an RTK stimulating factor for the RTK pathway to form a test well, and adding to another well the RTK stimulating factor to form a control well; continuously monitoring cell-substrate impedance of the at least two wells; and determining a difference in impedance or optionally in cell index between the test well and control well; and if significantly different, concluding the proposed therapeutic compound is therapeutically active in the RTK pathway within the cancer cells of the human subject.
Abstract:
The present invention relates to certain pyrrolopyrimidine derivatives, pharmaceutical compositions containing them, and methods of using them, including methods for the treatment of proliferation disorders and other diseases related to the dysregulation of kinase (such as, but not limited to, EGFR (including HER), Alk, PDGFR, BLK, BMX/ETK, BTK, FLT3(D835Y), ITK, JAK1, JAK2, JAK3, TEC and TXK) and/or the respective pathways.
Abstract:
Methods of inducing functional maturation of immature cardiomyocytes derived from induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) by electrically pacing the immature cardiomyocytes according to a pulse profile that induces maturation until the immature cardiomyocytes mature into functionally adult cardiomyocytes.
Abstract:
The present invention relates to certain pyrrolopyrimidine derivatives, pharmaceutical compositions containing them, and methods of using them, including methods for the treatment of tumors and related diseases related to the dysregulation of kinase (such as EGFR (including HER), Alk, PDGFR, but not limited to) pathways.
Abstract:
An optical engine its use in a bench top flow cytometer, the optical engine having a set of lasers, each focused horizontally along an x-axis to a same horizontal position and vertically along a y-axis to a different vertical position along a same excitation plane of a flow cell, a set of optics that separate fluorescence of a same wavelength range into different locations in a focal plane of collection optics according to the different lasers by which the fluorescent light is excited; and a detector that selectively detects light from the different locations thereby distinguishing between fluorescence emitted within the same wavelength range as excited by the different lasers.
Abstract:
An optical engine for use in a bench top flow cytometer, the optical engine comprising a set of lasers; a different set of beam shaping optics for each laser, wherein each set comprises two lenses to adjustably focus light horizontally along an x-axis to a same horizontal position and vertically along a y-axis to a different vertical position along a same plane; collection optics for collecting fluorescence from the flow cell; filtration optics that filter the collected fluorescence from the flow cell into different detection channels according to wavelength ranges; and a detector for each detection channel that converts the filtered fluorescence to electrical signals, wherein electrical signals are processed so that the fluorescence from each laser at the different vertical positions is distinguished at the same detector.