Abstract:
A curved display includes a display panel having a curved major surface and a light control film disposed proximate the display panel. The curved major surface is curved about a first axis, and a central portion of the curved major surface has a surface normal along a second axis substantially orthogonal to the first axis. The light control film includes a major surface having a substantially same shape as the curved major surface and includes a plurality of alternating optically transmissive and optically absorptive regions. In a cross-section orthogonal to the first axis, a transmissive region and adjacent absorptive regions define a central ray transmission direction through the optically transmissive region such that a light ray emitted by the display panel and transmitted through the optically transmissive region along the transmission direction is refracted upon exiting the curved display into a direction substantially parallel to the second axis.
Abstract:
Devices are provided, including a housing defining at least one window, a broadband UVC light source, and a multilayer article positioned within the housing. The multilayer article includes an absorbent layer and an ultraviolet mirror containing at least a plurality of alternating first and second optical layers. The absorbent layer absorbs and/or scatters ultraviolet light having a wavelength between at least 230 nanometers (nm) and 400 nm. The ultraviolet mirror reflects ultraviolet light in a wavelength range from 190 nm to 240 nm. Methods of disinfecting a material are also provided, including obtaining a device and directing ultraviolet radiation through the window, and exposing the material to the ultraviolet radiation for a time sufficient to achieve a desired degree of disinfection of the material. Systems and computing devices including the device are also provided.
Abstract:
An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
Abstract:
An optical system includes a lightguide having opposing top and bottom major surfaces. A round through opening extends between the two surfaces of the lightguide. An elongated channel is formed in one of the surfaces and at least partially surrounds and is substantially concentric with the opening. The channel has a depth (d) that varies along its length. Light extractors extract light that would otherwise propagate within and along the lightguide. The features of the lightguide can be varied to optimize performance of the lightguide for various purposes.
Abstract:
A light guide includes a light input surface, a first major surface orthogonal to the light input surface, a second major surface opposing the first major, a plurality of discrete light extraction features disposed on the second major surface and a plurality of closely packed prisms disposed along the second major surface. The plurality of discrete light extraction features separate the plurality of closely packed prisms from the second major surface. Each of the closely packed prisms include a first prism surface forming a first angle with the second surface in a range from 80 to 100 degrees or in a range from 85 to 95 degrees or in a range from 87 to 93 degrees.
Abstract:
An optical system comprises a lightguide having an elongated recess formed therein. The recess divides the lightguide into a first lightguide section a second larger lightguide section. Light extractors are disposed in the second, but not the first, lightguide section for extracting light that would otherwise propagate within and along the second lightguide section via total internal reflection (TIR). The depth of the recess varies along its length. The inclusion of a recess having a depth that varies along its length provides design flexibility in the number and location of light source(s) used by the optical system.
Abstract:
A backlight includes a front and back reflector forming a light recycling cavity and one or more light source members disposed to emit light into the light recycling cavity. The front reflector being partially reflective to provide an output illumination area. The front reflector has a blue sloped transmission spectra, at normal incidence with a range among bin values from 15% to 100%.
Abstract:
A backlight (10) includes a front and back reflectors (12,14) forming a light recycling cavity (16) and one or more light source members (24a, 24b, 24c) disposed to emit light into the light recycling cavity. The front reflector (12) being partially reflective to provide an output illumination area. The front reflector (12) has a blue sloped transmission spectra, at normal incidence with a range among bin values from 15% to 100%.
Abstract:
Light sources are disclosed. A disclosed light source includes an optically reflective cavity that includes an input port for receiving light and an output port for transmitting light, a lamp that is disposed at the input port, and an optical stack that is disposed at the output port. The optical stack includes a forward scattering optical diffuser that is disposed at the output port and has an optical haze that is not less than about 20%, and an optical film that is disposed on the optical diffuser. The optical film enhance total internal reflection at the interface between the optical film and the optical diffuser. The optical film has an index of refraction that is not greater than about 1.3 and an optical haze that is not greater than about 5%. The optical stack also includes a reflective polarizer layer that is disposed on the optical film. Substantial portions of each two neighboring major surfaces in the optical stack are in physical contact with each other.
Abstract:
A device including a housing that is substantially impermeable to ultraviolet radiation having a wavelength of from 280 nm to 400 nm, and at least one window defined in the housing, the window including a UV-C radiation band-pass mirror film having a multiplicity of alternating first and second optical layers collectively transmitting UV-C radiation at a wavelength from at least 100 nm to less than 280 nm and not transmitting UV-A and UV-B radiation at a wavelength of from 280 nm to 400 nm, and an ultraviolet radiation source positioned within the housing, the ultraviolet radiation source being capable of emitting ultraviolet radiation at one or more wavelength from 100 nm to 400 nm. The device optionally further includes an ultraviolet mirror film positioned within the housing so as to reflect ultraviolet radiation emitted by the ultraviolet radiation source. A method of disinfecting a material is also disclosed.