Abstract:
The present invention is directed to a composition for use as a catalyst in, for example, a fuel cell, the composition comprising platinum, nickel, and iron, wherein (i) the concentration of platinum is greater than 50 atomic percent, the concentration of nickel is less than 15 atomic percent and/or the concentration of iron is greater than 30 atomic percent, or (ii) the concentration of platinum is greater than 70 atomic percent and less than about 90 atomic percent. The present invention is further directed to a process for preparing such a catalyst composition from a catalyst precursor composition comprising platinum, nickel, and iron, wherein the concentration of platinum therein is less than 50 atomic percent.
Abstract:
A fuel cell catalyst comprising platinum, titanium and tungsten. In one or more embodiments, the concentration of platinum is less than 60 atomic percent, and/or the concentration of titanium is at least 20 atomic percent, and/or the concentration of tungsten is at least 25 atomic percent.
Abstract:
An improved metal alloy fuel cell electrocatalyst composition containing platinum, rhodium, molybdenum, and nickel iron or a combination thereof.
Abstract:
An infinitely variable physical vapor deposition matrix system that allows the synthesis of multiple combinatorial catalyst samples at essentially the same time, by the co-deposition of multiple materials, or the sequential layer by layer deposition of multiple catalyst constituents, or both, such that the optimum mix of materials for a pre-determined application can be experimentally determined in subsequent testing. The discovery of optimal catalyst combinations for utilization in specified reactions and devices is facilitated. The high throughput system reduces the time and complexity of processing typically required to formulate and test combinatorial catalyst materials.
Abstract:
Systems and methods for preparing electrocatalysts are disclosed. The system includes-a high temperature synthesis device for preparing an array of electrocatalysts as electrolytic surfaces of working electrodes. At least a portion of the electrolytic surfaces are defined by different materials. The device includes a plurality of openings for receiving the array of working electrodes and a mask having a plurality of openings configured for exposing at least a portion of each of the working electrodes for forming the electrolytic surfaces thereon.
Abstract:
A method of treating the surface of a substrate by thermally spraying large size particles, >10 micrometers, of a composition such as a metal hydroxide, carbonate, or nitrate directly onto the substrate whereby a small size particle coating,
Abstract:
The present invention discloses an integrated SOFC system powered by natural gas. Specifically, a SOFC-O cell is combined with a SOFC-H cell so as to take advantage of the high operating temperature and steam reforming capabilities of the SOFC-O cell as well as the higher fuel conversion efficiency of the SOFC-H cell.
Abstract:
According to exemplary embodiments, a method for resource management of network systems includes sampling channel states of a first set of channels from at least one base station associated with a radio network controller providing an application and estimating channel states of a second set of channels from the at least one base station, wherein the estimated channel states are based on previously sampled channel states and currently sampled channel states. The method further includes adapting at least one runtime parameter of the application based on the sampled channel states of the first set of channels and the estimated channel states of the second set of channels.