Abstract:
A catadioptric reduction projection optical system having a first lens unit having negative refractive power and widening a light beam from a reticle, a prism type beam splitter for transmitting therethrough a light beam from the first lens unit, a concave reflecting mirror for returning the light beam emerging from the beam splitter to the beam splitter while converging it, and a second lens unit having positive refractive power and converging the light beam returned to the beam splitter and reflected by the beam splitter, and forming the reduced image of a pattern on the reticle on a wafer.
Abstract:
A projection exposure apparatus can correct focal point movement caused by an environmental change, such as a change in temperature or atmospheric pressure, during an operation, while minimizing occurrence of a new aberration such as a spherical aberration caused by focus correction. The projection exposure apparatus of this invention exposes a mask pattern on a photosensitive substrate via a projection optical system. The projection optical system includes a refraction or reflection type optical member, and a diffraction type correction optical member. The correction optical member has focal position movement with an environmental change during an operation in a direction opposite to the direction of focal position movement of the optical member with the environmental change during the operation.
Abstract:
In a cata-dioptric optical system having a combination of a reflection system and a refraction system for reduction-projecting an object on a first plane onto a second plane, a polarization beam splitter and a quarter wavelength plate are provided to split the incident light and the reflected light. The light beam directed to the polarization beam splitter is converted to a substantially collimated light beam by a first group of lenses. A second group of lenses are arranged between the polarization beam splitter and a concave reflection mirror to diverge the light beam. The light reflected by the concave reflection mirror is directed back to the polarization beam splitter with a substantially collimated state by the second group of lenses. The light beam from the second group of lenses transmitted through the polarization beam splitter is focused by a third group of lenses having a positive refraction power to form a reduced image.
Abstract:
A mirror converging-type illumination optical system for converging light rays from a light source into substantially parallel light rays using a concave reflecting mirror having a secondary curved surface comprises a conical refraction member having a convex conical refraction surface at an input or incident side thereof and another convex conical refraction surface at an output side thereof. The refraction member is arranged in a path of the parallel light rays with a vertex of the conical refraction member being substantially aligned with the optical axis of the illumination optical system. The refraction member inverts the inner and outer portions of the incident parallel light rays. The absence of incident parallel light around the optical axis thereof is corrected to achieve a uniform intensity of light rays.