Abstract:
A flat panel display device includes a display module, a protection window member and a layer disposed in an area between the protection window member and a display area of the display module. The protection window member includes a stepped portion within which the layer is disposed. The stepped portion may include a recess or a plurality of layers.
Abstract:
For processing, e.g. encoding or decoding, a video stream, a type of a current macroblock unit is determined. The type indicates portions of corresponding macroblock parameter sets necessary for processing the current macroblock unit. The corresponding macroblock parameters are mapping to a dependent set of macroblock units of the current macroblock unit. The current macroblock unit is processed if a local buffer already stores the portions of the corresponding macroblock parameter sets. If data of the portions of the corresponding macroblock parameter sets that are not available in the local buffer, the data are copied from a memory circuit into the local buffer for processing the macroblock unit.
Abstract:
A progressively encoded image file, e.g. a JPEG bit stream, is decoded in multiple rounds. In first round, variable length encoded data in multiple scan segments of a first region are decoded. Meanwhile, position indicators for locating the next region are stored. In next round, the second region is decoded by reference to the position indicators for locating where the variable length encoded data of the second region are stored. The procedures are repeated until all regions are decoded to save memory usage during decoding.
Abstract:
A receiving container for a display device includes a bottom plate, a sidewall and a grounding unit. The sidewall is extended from the bottom plate to define a receiving space. The grounding unit is integrally formed with the bottom plate. The grounding unit includes a grounding member that grounds a circuit board received in the receiving space. The circuit board includes a grounding electrode and the grounding member corresponds to the grounding electrode. The grounding member is formed on a rear surface of the bottom plate. The grounding member may include a protrusion or a projected portion having an elastic structure.
Abstract:
A data processing apparatus and the same method utilize a first and a second IDCT circuits, a transpose memory, and a controller to perform a first and a second 1-D IDCT procedures. The apparatus performs IDCT procedure on a plurality of incoming data with zero and/or non-zero information. The apparatus further comprises at least one tag table for keeping records of corresponding zero and non-zero information associated with the incoming data. The controller records the corresponding zero and/or non-zero information in the tag table so as to reduce the data processing time of the first and/or the second IDCT circuit. The controller can also direct the first IDCT temporary data both to the first and the second IDCT circuits for concurrently performing the second 1-D IDCT procedure. An associated architecture for the transpose memory and the associated data-writing and/or data-reading sequences for accessing the transpose memory are also disclosed in order to balance the IDCT work load between the first and the second 1-D IDCT circuits during the second 1-D IDCT procedure.
Abstract:
A gray voltage generation circuit for driving a liquid crystal display rapidly outputs an altered gray voltage so that a source driving circuit can charge liquid crystal capacitors constructed in a liquid crystal panel in a short period of time. In response to the gray voltages from the gray voltage generation circuit, while driving a positive polarity, the source driving circuit generates a liquid crystal driving voltage of higher level than the existing liquid crystal driving voltage when applying a gate clock signal of high level, and generates a liquid crystal driving voltage of a level similar to the existing liquid crystal driving voltage when applying a gate clock signal of low level. And, while driving a negative polarity, the source driving circuit generates a liquid crystal driving voltage of lower level than an existing liquid crystal driving voltage when applying a gate clock signal of high level, and generates a liquid crystal driving voltage of a level similar to the existing liquid crystal driving voltage when applying a gate clock signal of low level.
Abstract:
A gray voltage generation circuit for driving a liquid crystal display rapidly outputs an altered gray voltage so that a source driving circuit can charge liquid crystal capacitors constructed in a liquid crystal panel in a short period of time. In response to the gray voltages from the gray voltage generation circuit, while driving a positive polarity, the source driving circuit generates a liquid crystal driving voltage of higher level than the existing liquid crystal driving voltage when applying a gate clock signal of high level, and generates a liquid crystal driving voltage of a level similar to the existing liquid crystal driving voltage when applying a gate clock signal of low level. And, while driving a negative polarity, the source driving circuit generates a liquid crystal driving voltage of lower level than an existing liquid crystal driving voltage when applying a gate clock signal of high level, and generates a liquid crystal driving voltage of a level similar to the existing liquid crystal driving voltage when applying a gate clock signal of low level.
Abstract:
An ice tray in an automatic ice making machine of a refrigerator is emptied by being rotated, whereupon the tray becomes deformed to eject the ice. The tray is rotated (and deformed) alternately in opposite directions in order to extend the life of the tray.
Abstract:
A receiving container for a display device includes a bottom plate, a sidewall and a grounding unit. The sidewall is extended from the bottom plate to define a receiving space. The grounding unit is integrally formed with the bottom plate. The grounding unit includes a grounding member that grounds a circuit board received in the receiving space. The circuit board includes a grounding electrode and the grounding member corresponds to the grounding electrode. The grounding member is formed on a rear surface of the bottom plate. The grounding member may include a protrusion or a projected portion having an elastic structure.
Abstract:
One scanning method of transform-based digital data processing includes: when processing data blocks, recording characteristics information for different block categories individually; conditionally adjusting scan orders of data processing of the block categories according to the characteristics information; and performing the data processing upon a current data block according to a scan order corresponding to a block category to which the current data block belongs. Another scanning method of transform-based digital data processing includes: recording characteristics information when processing data blocks; conditionally adjusting a scan order according to the characteristics information; keeping at least one position in the scan order fixed regardless of changes made to the scan order; and performing a data processing upon a current data block according to the scan order.