Abstract:
An in-plane switching (IPS) liquid crystal display device (100) includes pixel units each having a storage capacitor. The storage capacitor is formed by a common electrode (112), a drain electrode (103), and a counter electrode (110). The common electrode is electrically coupled with the counter electrode. The counter electrode substantially covers the drain electrode, for shielding unexpected coupling effects on the drain electrode due to data signals on a data line (101) driving other pixels of the liquid crystal display device.
Abstract:
A storage capacitor in a liquid crystal display is provided for increasing the capacitance of the storage capacitor without substantially changing the manufacturing process, the storage capacitor including a first capacitor electrode (18), a first insulating layer (16) formed on the first capacitor electrode, a second capacitor electrode (14) formed on the first insulating layer, a second insulating layer (12) formed on the second capacitor electrode, and a third capacitor electrode (11) formed on the second insulating layer and electrically connected with the first capacitor electrode. The second capacitor electrode is electrically connected with the pixel electrode (10) of the liquid crystal display. With this configuration, the capacitance of the storage capacitor is substantially increased without reducing the aperture ratio of each pixel of a liquid crystal display.
Abstract:
A continuous domain vertical alignment liquid crystal display (2) has a first substrate (21), a second substrate (22), and liquid crystal molecules (26) interposed between the substrates. A plurality of curved slits (211) and a plurality of curved protrusions (221) are disposed at insides of the substrates respectively. When an electric field is applied between the substrates, the liquid crystal molecules are inclined to be oriented parallel to the substrates. In addition, the curved slits and the curved protrusions affect the orientations of the liquid crystal molecules, such that the liquid crystal molecules are directed to incline in various directions in smooth continuums. The visual effect of the continuous domain vertical alignment liquid crystal display is the sum of multiple smooth continuous domains. Thus the continuous domain vertical alignment liquid crystal display provides a more even display performance at various different viewing angles.
Abstract:
A touching display panel and a display device using the same are provided. The touching display panel includes a liquid crystal layer, a first substrate having a hard surface structure, a second substrate, a touch sensor layer, a thin-film transistor layer, and a color filter layer. The first and second substrates are respectively disposed at two sides of the liquid crystal layer. The touch sensor layer is disposed between the first substrate and the liquid crystal layer, and is formed on the first substrate. The thin-film transistor layer and the color filter layer are both disposed between the first substrate and the second substrate. At least one of the thin-film transistor layer and the color filter layer is formed on the first substrate.
Abstract:
The disclosure provides a method for fabricating the touch panel, including: providing a display panel, and the display panel includes a first substrate and a second substrate opposite to the first substrate; thinning the display panel to form a thinned display panel; and forming a touch panel on the outer surface of the thinned display panel.
Abstract:
A continuous domain vertical alignment liquid crystal display panel includes a first substrate and a second substrate opposing to the first substrate. The first substrate includes a first electrode and a number of protrusions disposed on the first electrode. The second substrate includes a second electrode and a number of slits defined in the second electrode. Each protrusion is adjacent to at least one slit, and one of the adjacent protrusion and slit is extended along a straight line and the other is extended along a sine curve. A baseline is defined passing through 0 degrees and 180 degrees on the sine curve, and an angle between protrusions or slits extended along the sine curve and the baseline is smaller than 25 degrees.
Abstract:
A liquid crystal display panel includes a color filter, a thin film transistor substrate in opposition to the color filter, a liquid crystal layer provided between the color filter and the thin film transistor substrate and a sealant provided corresponding to the mark regions and surrounding the liquid crystal layer. The mark regions are provided on periphery of the thin film transistor substrate and each includes a plurality of alignment marks as references for applying the frame sealant and therefore controlling the applying amount and rate of the frame sealant so that the applied frame sealant has line width of desired specification and that the distance between the substrates is desirably determined. A related method for manufacturing a liquid crystal display panel is also provided.
Abstract:
A driving method for an active matrix liquid crystal display panel includes the following steps. First, a frame period is divided into a display period (t1) and a black insertion period (tr). A gray-scale voltage is generated according to a desired corresponding light transmittance of each pixel of the liquid crystal display panel; and during the display period, the gray-scale voltage is supplied to a corresponding pixel electrode of the liquid crystal display panel. Then during the black insertion period, a restoring voltage Vh is supplied to the pixel electrode, so that the pixel is returned to an initial black state. Accordingly, the quality of motion pictures of the liquid crystal display panel is good.
Abstract:
A continuous domain vertical alignment liquid crystal display (2) has a first substrate (21), a second substrate (22), and liquid crystal molecules (26) interposed between the substrates. A plurality of curved first protrusions (211) and a plurality of curved second protrusions (221) are disposed at insides of the substrates respectively. When an electric field is applied between the substrates, the liquid crystal molecules tend to be oriented parallel to the substrates. In addition, the curved protrusions affect the orientations of the liquid crystal molecules, such that the liquid crystal molecules are directed to incline in various directions in smooth continuums. The visual effect of the continuous domain vertical alignment liquid crystal display is the sum of multiple smooth continuous domains. Thus the continuous domain vertical alignment liquid crystal display provides a more even display performance at various different viewing angles.
Abstract:
An IPS liquid crystal display (200) of a preferred embodiment of the present invention includes a first substrate (201), a second substrate (202), and liquid crystal molecules interposed therebetween. A plurality of gate lines (211) and data lines (212) are formed at the first substrate, thereby defining a plurality of pixel regions. A pixel electrode (233), a common electrode (243) and a TFT (220) are provided in each pixel region, the pixel electrode and the common electrode having a same curved shape. Because the pixel and common electrodes of have a same curved shape with smooth bends, when a voltage is applied, disclination of the liquid crystal molecules does not occur, and the contrast ratio of the IPS LCD is unimpaired. Furthermore, the electric field generated by them is a smooth continuum of multiple domains, and the IPS LCD provides equally fine visual performance at various different viewing angles.