Abstract:
A system and method for mobile ground-to-air and air-to-ground communication network acceleration. The system and method can reduce the cost of airborne communication services by creating a faster connection and thus increasing data throughput. In one embodiment, the communication network acceleration system and method provide as much as a four-fold increase over standard high-speed data rates. This increase is made possible in part through the integration, implementation, and use of acceleration and compression technologies in the ground system that supports communications to and from an airborne terminal.
Abstract:
A pumping unit system having vertical sampson post, a walking beam pivotally supported at the upper end of the sampson post and a horsehead affixed at a forward end thereof that supports a reciprocated sucker rod string, including a gear reducer mounted at selectable positions on the walking beam and having a horizontally extending drive shaft, a crank arm affixed to the drive shaft the spacing between a selectable length pitman rod having a first end secured to said crank arm and a second end having a pitman bearing that is selectably mountable to a plurality of pitman bearing locations and a prime mover connected to the gear reducer and wherein the characteristics of the pumping unit are determined by the selectable position of the gear reducer, the selectable length of the crank arm, the selectable length of the pitman rod, and the selectable pitman bearing location.
Abstract:
Methods and systems for measuring and gathering data relating to publication usage by participants in publication readership studies. Some methods and systems employ portable monitors carried by participants of the studies along with publications fitted with various devices, such as piezoelectric transducers, RFID tags and others devices and circuits.
Abstract:
A filtration system includes an outer casing (210) that houses a plurality of elongated inner casings (220A–220F), which in turn house a plurality of filtration membranes. The outer casing, inner casing, and filtration membranes are disposed relative to one another to provide a three-flow channel system that provides additional feed fluid at one or more membrane couplings between membranes of the same inner casing. Ths arrangement defines a feed fluid flow path in which a feed fluid exiting from an upstream filter into a downstream filter is diluted by additional feed fluid.
Abstract:
The present invention features a unique carrying device for carrying a cartable item, wherein the carrying device is formed of a rigid structure and comprises means for engaging a first shoulder of a user, means for engaging a second shoulder of a user, means for connecting the means for engaging the first and second shoulders of a user together, means for adjusting the ergonomic configuration of the carrying device, means for releasably coupling or attaching the carrying device to a golf bag, and means for transitioning, upon elective actuation, functions to transition or convert the carrying device from a single-shoulder carrying arrangement or position to a dual-shoulder carrying arrangement or position.
Abstract:
A lightweight electro-mechanical chest compression device. The device is provided with a motor, a brake, a drive spool, a control system, and a metal channel beam to brace the device and guide a compression belt. The belt is provided in a belt cartridge that attaches to the channel beam. In use, the belt is secured around the patient and to the drive spool. The motor tightens the belt by turning the drive spool. The electro-mechanical chest compression device weighs less than 30 pounds when fully assembled with its power source.
Abstract:
A pickup reel for a harvesting platform including a reel support structure with a reel shaft rotatably supported thereon. A plurality of radially extending arms are mounted to the reel shaft and a plurality of transverse rockshafts are mounted to the radially extending arms and are axially offset and parallel to the reel shaft and span the width of the platform. Radial fingers are mounted on each rockshaft. A cam is mounted to the support structure adjacent one or both ends of the rockshafts and defines an endless cam path about the reel shaft. A crank arm attached to each rockshaft carries a cam follower that engages the cam path for following along the path. The cam path is configured to cause the crank arms, and thus the rockshafts, to rotate about the respective rockshaft axis to vary the attitude of the fingers relative to the ground as the cam followers move along the cam path. The cam is segmented, having two or more cam segments joined together to form the endless cam path. The cam segments are joined together by removable fasteners to enable one segment to be removed and replaced to either vary the cam path or to replace a worn cam segment.
Abstract:
A simulated environment includes a motion control system. The motion control system comprises a suspension structure, a housing slidably engaged to the suspension structure such that the suspension controller translates in a planar manner relative to the suspension structure. A rotary component is rotatably attached to the housing. A plurality of winches are attached to the rotary component, the plurality of winches having cables to allow longitudinal movement of the cables parallel to a force of gravity.
Abstract:
A simulated environment includes a motion control system. The motion control system comprises a suspension structure, a housing slidably engaged to the suspension structure such that the suspension controller translates in a planar manner relative to the suspension structure. A rotary component is rotatably attached to the housing. A plurality of winches are attached to the rotary component, the plurality of winches having cables to allow longitudinal movement of the cables parallel to a force of gravity.
Abstract:
The flow of teams of one or more players is controlled through different geographical areas of a mixed virtual reality and physical experience that takes place on an attraction stage. The geographical areas may include rooms, compartments, or other geographical areas through which a team may progress. Within each geographical area, a team may engage in an experience and accomplish one or more checkpoints. Based on the time to achieve each checkpoint, the experience may be shortened or lengthened, either within the particular geographical area or the experience as a whole, to control the flow of the particular team through the series of geographical areas.