Abstract:
Integrated circuits with clock generation and distribution circuitry are provided. Integrated circuits may include phase-locked loops configured to generate multiple clock signals that are delayed versions of one another. The clocks signal may be distributed to various regions on an integrated circuit using serially connected clock buffer blocks. Each buffer block may include bidirectional pairs of buffer circuits coupled in parallel. Each buffer circuit may have a first input configured to receive an input clock signal, an output at which a corrected version of the input clock signal is provided (e.g., an output at which an output clock signal with desired duty cycle is provided), a second input that receives a first delayed clock signal for setting the desired duty cycle for the output clock signal, and a third input that receives a second delayed clock signal that is high at least when the first delayed clock signal rises high.
Abstract:
An adjustable delay circuit includes first and second transistors each having a control input coupled to an input node of the adjustable delay circuit and an output coupled to an output node of the adjustable delay circuit. The adjustable delay circuit includes a first pass gate coupled between first and second capacitors and the output node of the adjustable delay circuit. The first and the second capacitors are coupled between a node at a high voltage and a node at a low voltage. The first pass gate is operable to be controlled by a first delay control signal.
Abstract:
Method and circuitry for implementing high speed multiple-data-rate interface architectures for programmable logic devices. The invention partitions I/O pins and their corresponding registers into independent multiple-data rate I/O modules each having at least one pin dedicated to the strobe signal DQS and others to DQ data signals. The modular architecture facilitates pin migration from one generation of PLDs to the next larger generation.
Abstract:
A dynamic phase alignment circuit includes a phase generator circuit having delay-locked loop circuits that generate periodic output signals. Each of the delay-locked loop circuits generates one of the periodic output signals in response to at least two periodic input signals. A multiplexer circuit selects a selected periodic signal from among the periodic input signals and the periodic output signals based on select signals. A phase detection circuit compares a phase of the selected periodic signal to a data signal to generate a phase detection signal. A control logic circuit generates the select signals. The control logic circuit adjusts the select signals based on changes in the phase detection signal to cause the multiplexer circuit to adjust the phase of the selected periodic signal.
Abstract:
Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
Abstract:
Circuits, methods, and apparatus for dynamic control of source and termination impedances. One output stage provides a series termination when transmitting and a parallel termination when receiving data. A pull-up device has a nominal impedance of 50 ohms when the output stage pulls a pin from a low voltage to a high voltage, while a pull-down device has a nominal impedance of 50 ohms when the pin is pulled from a high voltage to a low voltage. Both the pull-up and pull-down devices are turned on when receiving data. Due to their non-linear current-voltage characteristics, the pull-up device appears as 50 ohms when the pin voltage is higher than one half the supply voltage, while the pull-down device appears as 50 ohms when the pin voltage is lower than one half the supply voltage. The pull-up and pull-down devices can be calibrated to provide a nominal 50 ohm impedance.
Abstract:
Circuits, methods, and apparatus for transferring data from a device's input clock domain to a core clock domain. One example achieves this by using a retiming element between input and core circuits. The retiming element is calibrated by incrementally sweeping a delay and receiving data at each increment. Minimum and maximum delays where data is received without errors are averaged. This average can then be used to adjust the timing of a circuit element inserted in an input path between an input register clocked by an input strobe signal and an output register clocked by a core clock signal. In one example, an input signal may be delayed by an amount corresponding to the delay setting. In other examples, each input signal is registered using an intermediate register between the input register and the output register, where a clock signal is delayed by an amount corresponding to the delay setting.
Abstract:
A feedback loop circuit includes a phase detector and delay circuits. The phase detector generates an output signal based on a delayed periodic signal. The delay circuits are coupled in a delay chain that delays the delayed periodic signal. Each of the delay circuits includes variable delay blocks and fixed delay blocks that are coupled to form at least two delay paths for an input signal through the delay circuit to generate a delayed output signal. Delays of the variable delay blocks in the delay circuits vary based on the output signal of the phase detector. Each of the delay circuits reroutes the input signal through a different one of the delay paths to generate the delayed output signal based on the output signal of the phase detector during operation of the feedback loop circuit.
Abstract:
Circuits, methods and apparatus are provided to reduce skew among signals being provided or transmitted by a data interface. Signal path delays are varied such that signals transmitted by a memory interface are calibrated or aligned with each other along a rising and/or falling edge. For example, self-calibration, external circuitry, or design tools can provide skew adjustment of each output channel by determining one or more delays for each output channel path. When aligning multiple edges, the edges of the output signals may be aligned independently, e.g., using edge specific delay elements.
Abstract:
Circuits, methods, and apparatus for transferring data from a device's input clock domain to a core clock domain. One example achieves this by using a retiming element between input and core circuits. The retiming element is calibrated by incrementally sweeping a delay and receiving data at each increment. Minimum and maximum delays where data is received without errors are averaged. This average can then be used to adjust the timing of a circuit element inserted in an input path between an input register clocked by an input strobe signal and an output register clocked by a core clock signal. In one example, an input signal may be delayed by an amount corresponding to the delay setting. In other examples, each input signal is registered using an intermediate register between the input register and the output register, where a clock signal is delayed by an amount corresponding to the delay setting.