Abstract:
An electroerosion machining system comprises an electrode, a power supply, an electrolyte supply, an electroerosion controller connected to and monitoring the power supply, and a working apparatus configured to move the electrode relative to the workpiece. The electroerosion machining system further comprises a CNC controller configured to cooperate with the electroerosion controller to control the working apparatus, and to calculate a wear value of the electrode. Further, the CNC controller is configured to segment the toolpath of every layer into a plurality of segments, and to divide the compensation value for every layer to be machined into a plurality of value segments, and further to use the value segments to compensate for electrode wear along the respective toolpath segments during machining of the workpiece. An electroerosion machining method is also presented.
Abstract:
An Instant Messaging (IM) method and server are provided. The method includes: receiving instance login information sent by an IM client, wherein the instance login information at least includes login information of a user of the IM client and instance information of a terminal located by the IM client (101); authenticating identity of the user of the IM client, according to the login information in the instance login information (102); when the authenticating is passed, allocating an instance number for the IM client, according to the instance information in the instance login information, wherein the instance number is configured to uniquely identify the IM client (103). The server includes a receiving module (801), an authenticating module (802) and an allocating module (803). By adopting the method and server provided, multipoint login of one login account may be effectively achieved, and multiple aspects requirements of a user may be satisfied.
Abstract:
A method of fabricating a component is provided. The method includes depositing a fugitive coating on a surface of a substrate, where the substrate has at least one hollow interior space. The method further includes machining the substrate through the fugitive coating to form one or more grooves in the surface of the substrate. Each of the one or more grooves has a base and extends at least partially along the surface of the substrate. The method further includes forming one or more access holes through the base of a respective one of the one or more grooves to connect the respective groove in fluid communication with the respective hollow interior space. The method further includes filling the one or more grooves with a filler, removing the fugitive coating, disposing a coating over at least a portion of the surface of the substrate, and removing the filler from the one or more grooves, such that the one or more grooves and the coating together define a number of channels for cooling the component.
Abstract:
A preform includes an airfoil stub and a dovetail hub. The hub first undergoes electrochemical discharge machining to form a rough dovetail. The airfoil stub undergoes electrochemical machining to form an airfoil. The rough dovetail then undergoes electrochemical discharge machining to form a rough tang. The rough tang is finish machined to form a dovetail extending from the airfoil in a unitary rotor blade.
Abstract:
A crank-type non-beam pumping unit, including a belt, a foundation, a crown sheave, a frame, a support rod, a belt pulley, a pin shaft, a crank, a transmission shaft, and a bracket. The bottom of the frame is disposed on the foundation, and the top of the frame is supported by the support rod. The top of the support rod is hinge connected to the frame, and the bottom of the support rod is hinge connected to the foundation. The bracket is disposed on the foundation, the transmission shaft is disposed on the bracket, and the crank is disposed on the transmission shaft. The crank rotates synchronously with the transmission shaft, and the belt pulley is disposed on one end of the crank via the pin shaft. One end of the belt bypasses the crown sheave, and is connected to a smooth sucker rod.
Abstract:
A method for forming a hole in an object is provided. The method includes forming a starter hole in the object, providing an electrochemical machining electrode that includes insulation that extends only partially around the electrode, and inserting the electrode into the starter hole to form a hole in the object that has an inlet defined by a first cross-sectional area and an outlet defined by a second cross-sectional area.
Abstract:
In an Internet Protocol Television (IPTV) system, an IPTV server is configured to receive a request from an IPTV content storage device (CSD) to view a video stream. The IPTV server selects a set of peers for the IPTV CSD, and transmits the set of peers to the IPTV CSD. In the system, a capacity of a fiber to the node (FTTN) switch in a down linking direction is greater than or equal to a sum of a number of simultaneous viewers supported by the FTTN switch plus a number of viewers that receive video streams from peers in the same community.
Abstract:
Systems and methods are provided to facilitate location based services based on locations in virtual worlds and locations in the real world. In one aspect, a location server obtains and provides the locations of avatars of users in different virtual worlds and the locations of mobile devices of the corresponding users in the real world. An application server, for example, may provide location based services in a virtual world based on the location of a mobile device in the real world, or provide location based services to a mobile device based on the location of an avatar in a virtual world, or provide location based services to an avatar in one virtual world based on the location of a related avatar in another virtual world.
Abstract:
An electroerosion machining system comprises an electrode, a power supply, an electrolyte supply, an electroerosion controller connected to and monitoring the power supply, and a working apparatus configured to move the electrode relative to the workpiece. The electroerosion machining system further comprises a CNC controller configured to cooperate with the electroerosion controller to control the working apparatus, and to calculate a wear value of the electrode. Further, the CNC controller is configured to segment the toolpath of every layer into a plurality of segments, and to divide the compensation value for every layer to be machined into a plurality of value segments, and further to use the value segments to compensate for electrode wear along the respective toolpath segments during machining of the workpiece. An electroerosion machining method is also presented.
Abstract:
An electrochemical machining process for forming a non-circular hole from a substantially circular hole within a workpiece using an electrode. The electrode is made of an electrically conductive material and has insulated areas in which the electrically conductive material is coated with an insulating material, and exposed areas of metal or conductive material. The insulated areas and exposed areas extending in rows substantially along a longitudinal axis of the electrode. The electrode is first positioned in a substantially circular hole. An electric current is then applied to the electrode to electrochemically remove a predetermined amount of material from the substantially circular hole to form a non-circular hole. A variety of different non-circular shapes are achievable using the process.