Abstract:
A solar cell includes a substrate, a first electrode located over the substrate, a sodium doped p-type copper indium selenide (CIS) based alloy semiconductor absorber layer located over the first electrode, a zinc and sodium doped n-type copper indium selenide (CIS) based alloy semiconductor layer located on the p-type semiconductor absorber layer, and a second electrode located over the n-type semiconductor layer.
Abstract:
A frameless photovoltaic module retains the required load rating by incorporation of an oriented fibrous reinforcement (e.g., fibers, scrim or mesh) in the back side encapsulant, in the back sheet, or as a separate sheet between the encapsulant and the back sheet to increase the overall stiffness of the module. The reinforcement is compatible with the materials around it, in particular having good wet out, and may be freestanding or anchored to outer edges of the module, for example to the front glass, by means of an adhesive in order to further enhance the stiffness conferred to the module.
Abstract:
Provided are novel back sheets for solar module encapsulation. According to various embodiments, the back sheets are ungrounded and flexible. In certain embodiments, the back sheets include an integrated flexible and electrically isolated moisture barrier. The electrically isolated moisture barrier may be a thin metallic sheet, e.g., an aluminum foil. The electrically isolated, flexible moisture barrier eliminates the need for grounding.
Abstract:
A sputtering target includes a copper indium gallium sputtering target material on a backing structure. The sputtering target material has a density of at least 100% or more as defined by the rule of mixtures applied to densities of component elements of the sputtering target material. The sputtering target material has an overall uniform composition.
Abstract:
A sputtering target, including a sputtering layer and a support structure. The sputtering layer includes an alkali-containing transition metal. The support structure includes a second material that does not negatively impact the performance of a copper indium selenide (CIS) based semiconductor absorber layer of a solar cell. The sputtering layer directly contacts the second material.
Abstract:
Provided herein are methods, apparatuses and systems for fabricating photovoltaic cells and modules. In certain embodiments, the methods, apparatuses and systems involve coating ferromagnetic substrates with thin film solar cell materials and using magnetic force to constrain, move or otherwise manipulate partially fabricated cells or modules. According to various embodiments, the methods, apparatuses and systems provide magnetically actuated handling throughout a photovoltaic cell or module fabrication process, from forming photovoltaic cell layers on a substrate to packaging the module for transport and installation. The magnetically manipulated processing provides advantages over conventional photovoltaic module processing operations, including fewer mechanical components, greater control over placement and tolerances, and ease of handling. As a result, the methods, apparatuses and systems provide highly efficient, low maintenance photovoltaic module fabrication processes.
Abstract:
A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 μm, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
Abstract:
An interconnect assembly. The interconnect assembly includes a trace that includes a plurality of electrically conductive portions. The plurality of electrically conductive portions is configured both to collect current from a first solar cell and to interconnect electrically to a second solar cell. In addition, the plurality of electrically conductive portions is configured such that solar-cell efficiency is substantially undiminished in an event that any one of the plurality of electrically conductive portions is conductively impaired.
Abstract:
A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact/reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InxGa1-x)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described. The machine is adapted to incorporate dual cylindrical rotary magnetron technology to manufacture the improved solar cell material in a single pass.
Abstract translation:完全通过溅射制造改进的薄膜太阳能电池的方法包括含有由过渡金属氮化物组成的至少一个阻挡层的高效率背接触/反射多层。 使用双圆柱形旋转磁控管技术,由专门制备的导电靶共溅射铜铟镓硒(Cu(In x Ga 1-x)Se 2)吸收层(X为1至约0.7)。 吸收层的带隙可以通过改变镓含量来分级,并且通过用铝部分或全部替换镓来分级。 或者,在硒化氢气体存在下,吸收层从金属合金靶反应溅射。 使用RF溅射沉积含有ZnS的不含镉的窗口层。 顶部透明电极是反应溅射的铝掺杂的ZnO。 描述了一种独特的模块化真空辊对辊溅射机。 该机器适用于采用双圆柱形旋转磁控管技术,以单程制造改进的太阳能电池材料。
Abstract:
A photovoltaic module includes a first photovoltaic cell, a second photovoltaic cell and an energy storage device, such as a battery or capacitor, integrated into the module.