Abstract:
Provided herein are methods, apparatuses and systems for fabricating photovoltaic cells and modules. In certain embodiments, the methods, apparatuses and systems involve coating ferromagnetic substrates with thin film solar cell materials and using magnetic force to constrain, move or otherwise manipulate partially fabricated cells or modules. According to various embodiments, the methods, apparatuses and systems provide magnetically actuated handling throughout a photovoltaic cell or module fabrication process, from forming photovoltaic cell layers on a substrate to packaging the module for transport and installation. The magnetically manipulated processing provides advantages over conventional photovoltaic module processing operations, including fewer mechanical components, greater control over placement and tolerances, and ease of handling. As a result, the methods, apparatuses and systems provide highly efficient, low maintenance photovoltaic module fabrication processes.
Abstract:
Provided herein are methods, apparatuses and systems for fabricating photovoltaic cells and modules. In certain embodiments, the methods, apparatuses and systems involve coating ferromagnetic substrates with thin film solar cell materials and using magnetic force to constrain, move or otherwise manipulate partially fabricated cells or modules. According to various embodiments, the methods, apparatuses and systems provide magnetically actuated handling throughout a photovoltaic cell or module fabrication process, from forming photovoltaic cell layers on a substrate to packaging the module for transport and installation. The magnetically manipulated processing provides advantages over conventional photovoltaic module processing operations, including fewer mechanical components, greater control over placement and tolerances, and ease of handling. As a result, the methods, apparatuses and systems provide highly efficient, low maintenance photovoltaic module fabrication processes.
Abstract:
A method for measuring system response sensitivity, using live traffic and an analysis that converts randomly arriving stimuli and reactions to the stimuli to mean measures over chosen intervals, thereby creating periodically occurring samples that are processed. The system is perturbed in a chosen location of the system in a manner that is periodic with frequency p, and the system's response to arriving stimuli is measured at frequency p. The perturbation, illustratively, is with a square wave pattern.
Abstract:
A method for measuring system response sensitivity, using live traffic and an analysis that converts randomly arriving stimuli and reactions to the stimuli to mean measures over chosen intervals, thereby creating periodically occurring samples that are processed. The system is perturbed in a chosen location of the system in a manner that is periodic with frequency p, and the system's response to arriving stimuli is measured at frequency p. The perturbation, illustratively, is with a square wave pattern.
Abstract:
Provided are easy-to-install rooftop photovoltaic systems. One rooftop photovoltaic system includes a roofing material piece, a photovoltaic module disposed on the roofing material piece and an inverter configured to convert DC from the photovoltaic module into AC. Another rooftop photovoltaic system includes at least one active unit including one or more photovoltaic modules each including photovoltaic cells shaped as shingles to provide a roofing material appearance; and one or more inactive units having the roofing material appearance.
Abstract:
The Pocketed Compression sheath is polyester compressive material formed into an open-ended sheath. Squares of the same type of polyester material are sewn onto the sides of the open-ended sheath to form pockets. The sheath is intended to be slid onto an extremity such as foot. Figure B illustrates a larger version intended to be utilized for the mid to upper leg. The pockets are intended to be place holders for heating packs or ice packs to help minimize swelling and pain in muscles and joints.
Abstract:
Antibacterials having formula (I) and salts, prodrugs, and salts of prodrugs thereof, processes for making the compounds and intermediates used in the processes, compositions containing the compounds, and methods of prophylaxis and treatment of bacterial infections using the compounds are disclosed.
Abstract:
Provided herein are methods, apparatuses and systems for fabricating photovoltaic cells and modules. In certain embodiments, the methods, apparatuses and systems involve coating ferromagnetic substrates with thin film solar cell materials and using magnetic force to constrain, move or otherwise manipulate partially fabricated cells or modules. According to various embodiments, the methods, apparatuses and systems provide magnetically actuated handling throughout a photovoltaic cell or module fabrication process, from forming photovoltaic cell layers on a substrate to packaging the module for transport and installation. The magnetically manipulated processing provides advantages over conventional photovoltaic module processing operations, including fewer mechanical components, greater control over placement and tolerances, and ease of handling. As a result, the methods, apparatuses and systems provide highly efficient, low maintenance photovoltaic module fabrication processes.
Abstract:
A photovoltaic module includes a first photovoltaic cell, a second photovoltaic cell and an energy storage device, such as a battery or capacitor, integrated into the module.