Abstract:
The thread engagement verifier system provides for verifying the quality of a threaded connection 12 between upper and lower for tubular member 16, 18. One or more thermal radiation sensors 14 are used in combination with a data acquisition and processing computer 20 and an output device, such as a video display 12. The thermal radiation is generated by sliding friction between the tubular members, and the sensors 14 sense radiation at a plurality of external locations and output heat intensity signals to the computer 20. Torque may also be sensed via a sensor 32 and input to the computer 20.
Abstract:
A method and apparatus for sensing temperature using optical fiber is provided. In one embodiment, a method for sensing temperature using optical fiber includes launching a polarized optical signal having sufficient intensity to produce Brillouin scattering of the signal into a polarization maintaining optical fiber, receiving a first signal reflected from the launched signal, receiving a second signal reflected from the launched signal; and resolving a metric indicative of temperature from the first and second received signals. The method is particularly useful for sensing temperature in hazardous locations such as down hole gas and oil field applications or other applications where minimization of strain effects to signal transmission is desired.
Abstract:
The invention provides a cooling system for protecting an image fiber and an imaging device from thermal influences and a temperature measurement apparatus, for a molten metal, capable of being easily controlled and stably measuring the temperature. The temperature measurement apparatus for a molten metal comprises four connectable portions of a nozzle portion a purge/cooling gas introduction portion, an image fiber fitting portion with a window glass and an image fiber to a double pipe nozzle protection tube. A distance from a nozzle distal end as an introduction portion of thermal radiation light to a light reception portion at an image fiber distal end becomes short so that a greater amount of thermal radiation light can be received.
Abstract:
A detector including a base having a recess formed therein and a diaphragm generally extending across the recess. The detector further includes an infrared sensitive component or a piezoelectric or piezoresistive element located on, above or supported by the diaphragm. The diaphragm includes a material which is generally resistant to liquid chemical etchants and which has a thermal conductivity of less than about 0.005 Wcmnull1Knull1.
Abstract translation:一种检测器,包括具有形成在其中的凹部的基部和通常延伸穿过凹部的隔膜。 检测器还包括位于隔膜上方或由隔膜支撑的红外敏感元件或压电或压阻元件。 隔膜包括通常耐液体化学蚀刻剂并且具有小于约0.005Wcm -1 K -1的热导率的材料。
Abstract:
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
Abstract:
A test wafer for use in wafer temperature prediction is prepared. The test wafer includes: first semiconductor layer formed in a crystalline state; second semiconductor layer formed in an amorphous state on the first semiconductor layer; and light absorption film formed over the second semiconductor layer. Next, the test wafer is loaded into a lamp heating system and then irradiating the test wafer with a light emitted from the lamp, thereby heating the second semiconductor layer through the light absorption film. Thereafter, a recovery rate, at which a part of the second semiconductor layer recovers from the amorphous state to the crystalline state at the interface with the first semiconductor layer, is calculated. Then, a temperature of the test wafer that has been irradiated with the light is measured according to a relationship between the recovery rate and a temperature corresponding to the recovery rate.
Abstract:
A method of temperature measurement for measuring a temperature of an object to be measured that is heated by a heating source in a multiplex-reflection environment by using two radiation thermometers provided at a measurement part separated from the object to be measured is provided. In the method, two of the radiation thermometers have a rod that is embedded in the measurement part and can receive radiation light from the object to be measured, and an optical fiber connected to the rod; numerical apertures of the radiation thermometers are different; the multiplex-reflection environment is formed between a surface of the measurement part facing the object to be measured and the measurement part; a radiation rate null of the object to be measured based on a result of a measurement of two of the thermometers and the temperature of the object to be measured is calculated by the following equations nullnull1null(1nullNAnullN1)N2/(D1/D2) nulleffnull(1nullnull)nullnullnullnullnullnull/null1nullFnullrnull(1nullnull)nullwherein D1 represents a diameter of the rod of the radiation thermometers, NA represents the numerical aperture, D2 represents a distance between the object to be measured and the surface of the measurement part, r represents a reflectivity of the surface of the measurement part, F represents a view factor, null represents a multiplex reflection coefficient, nulleff represents an effective radiation rate of the object to be measured, and N1 and N2 are parameters.
Abstract:
Method and apparatus for measuring a surface temperature of an object body, by calculating a temperature at each picture element of an image of the object body, on the basis of a radiant intensity ratio at each pair of corresponding picture elements of a first and a second image which are obtained with respective radiations having respective first and second wavelengths which are selected from a light emitted from the surface of the body, by a first filter which permits transmission therethrough a radiation having the first wavelength which is selected according to a radiant-intensity curve corresponding to a wavelength of a black body at a lower limit of a temperature measurement range, and which is within a high radiant-intensity range in which the radiant intensity is higher than a radiant intensity at a normal room temperature, and a second filter which permits transmission therethrough a radiation having the second wavelength which is selected within the high radiant-intensity range, such that the second wavelength is different from the first wavelength by a predetermined difference which is not larger than {fraction (1/12)} of the first wavelength and which is not smaller than a sum of half widths of the first and second wavelengths.
Abstract:
At the time when a temperature of a semiconductor wafer or the like is measured by light without contacting to it, its temperature is measured with high precision without suffering from an influence of changes in temperature of a light source, an influence of a bent degree or the like of an optical fiber or an influence of a displacement of an optical system such as a lens or the like. Light output from the light source is irradiated to the semiconductor wafer through an optical fiber for irradiated light. The light reflected from the semiconductor wafer is output as reflected light through an optical fiber for the reflected light. An optical fiber for reference light having substantially the same route as those of the optical fiber for irradiated light and the optical fiber for reflected light is disposed. The light output from the light source is output as the reference light through the optical fiber for reference light without being irradiated to or reflected from the semiconductor wafer. And, a temperature of the semiconductor wafer is measured according to the reflected light output from the optical fiber for reflected light and the reference light output from the optical fiber for reference light.
Abstract:
A lighting system for night vision applications including a near infrared light source, a visible light source, a beamsplitter and an optical element. The beamsplitter is arranged to reflect light emitting from either the near infrared light source or the visible light source and transmit light emitting from the other of the near infrared light source or visible light source so as to produce a color-corrected light source. The optical element is disposed a predetermined distance from the color-corrected light source. The optical element includes an input surface for receiving light from the color-corrected light source and an output surface for emitting the received light in a desired emission pattern. In one embodiment, each of the near infrared light source and visible light source is associated with respective first and second optical elements. The first and second optical elements are arranged such that the emission patterns of each optical element are substantially identical and overlapping to form a single color-corrected light emission pattern.