Abstract:
Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.
Abstract:
Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.
Abstract:
Aqueous hydrogen iodide is prepared by the reaction of iodine, water and carbon monoxide in a reaction medium containing a strong acid at temperatures in the range from about 75* to about 200* C and pressures from about 25 to about 500 psig employing a rhodium- or iridium-containing catalyst.
Abstract:
A positive electrode active material for a lithium-sulfur battery, and more particularly, to a positive electrode active material for a lithium-sulfur battery including metal sulfide nanoparticles and a preparation method thereof. The metal sulfide nanoparticles with large specific surface area applied to the positive electrode active material for the lithium-sulfur battery according to the present invention acts as a redox mediator during charging and discharging of the lithium-sulfur battery, thereby reducing the shuttle response by not only inhibiting the formation itself of polysulfides with elution properties, but also, even if polysulfides are eluted, adsorbing them and thus preventing them from diffusing into the electrolyte solution, and thus the capacity and life characteristics of the lithium-sulfur battery can be improved.
Abstract:
An object of the present invention is to provide a novel sulfur-based positive electrode active material for a lithium-ion secondary battery which is excellent in cyclability and can largely improve a charging and discharging capacity, a positive electrode comprising the positive electrode active material and a lithium-ion secondary battery made using the positive electrode. The sulfur-based positive electrode active material is obtainable by subjecting a starting material comprising a polymer, sulfur and an organometallic compound dispersed in a form of fine particles to heat-treatment under a non-oxidizing atmosphere, wherein the particles of metallic sulfide resulting from sulfurization of the organometallic compound are dispersed in the heat-treated material, and particle size of the metallic sulfide particles is not less than 10 nm and less than 100 nm.