Abstract:
The hydraulic system comprises a 4/4-way valve, which is adapted to control the velocity of the mold-closing operation and the fluid pressure during said mold-closing movement and to assume three consecutive control positions, in each of which fluid pressure is applied to a stationary piston of an advance-retract cylinder from a first cylinder chamber, which is nearer to the mold. One of said control positions is a differential control position, in which pressure fluid displaced from the second cylinder chamber of said advance-retract cylinder, which second chamber is remote from the mold, is supplied to a pressure conduit through a branch passage, which includes a non-return valve. The differential control position is preceded and succeeded by a transitional control position, in which the pressure fluid displaced from the second cylinder chamber is returned through the 4/4-way valve to a reservoir. As a result of that arrangement the production rate of the injection molding machine can considerably be increased whereas only gradual velocity and pressure chambers are effected during the mold-closing movement.
Abstract:
This disclosure concerns dies for die casting machines having a stationary or cover die and a movable or ejector die which has a movable slide mounted thereon. A tapered trough is provided across the slide and into opposite sides of the movable die, and the cover die is provided with a floating wedge that fits into the full length of this trough for positioning and locking the slide with respect to the movable die on which this slide is mounted. The floating wedge may be held in the cover die by flanges on the wedge which loosely fit in grooves in the cover die. The tapers on the wedge and the sides of the trough are complimentary for locking the movable die parts together when all the die parts are closed for filling the cavity formed by the die parts with molten metal.
Abstract:
A method and apparatus for automatically setting the die height platen on a toggle-operated injection molding machine to achieve a desired mold clamping force. A control is provided and contains information relating a desired clamp tonnage with a toggle crosshead displacement, in order to permit setting the die height platen for a particular set of molds so that the clamp, when operated, will automatically provide the desired clamping force between the mold members. The adjustment is provided by moving the die height platen in response to deviations from a predetermined set of conditions, the die height platen being moved by an hydraulic motor and chain drive to shift the die height platen along guide rods that extend between the die height platen and a stationary mold platen.
Abstract:
A closing mechanism of an injection molding machine has a piston-cylinder unit to be pressurized hydraulically. Two partial strokes can be carried out in the unit, of which the first can be run through faster than the second. A displacement tube (7) extends into a main cylinder chamber (6) and into an inner cylinder chamber (4) of a piston (2) of the piston-cylinder unit. The displacement tube (7) is fastened to an end wall of the main cylinder (1) and is open at its free end. The piston (2) is designed as a plunger and is spaces on all sides from the cylinder wall (5) of the cylinder (1) of the piston-cylinder unit. The piston (2) is guided in a flanged gland (15) which is screwed to the cylinder (1).
Abstract:
A method and apparatus for controlling the hydraulic pressure in an hydraulic clamping cylinder to correspond with a desired clamping force and to compensate for overshoot of the hydraulic pressure caused by time delays in operating the components in the hydraulic circuit. The control arrangement involves the sensing of the actual hydraulic pressure during the clamp force maintenance portion of a clamping cycle and comparing the actual pressure with a desired pressure to provide a correction signal to be utilized to control the operation of the hydraulic system during the next succeeding cycle so that the actual hydraulic pressure during the clamp maintenance portion of the clamping cycle during the next succeeding cycle results in a clamping force that is closer to the desired clamping force.
Abstract:
A direct pressure type mold clamping apparatus for an injection-molding machine is capable of performing high speed mold closing and opening operations and of producing a required mold clamping force, without the use of a large sized motor, the mold clamping apparatus being driven by two motors. A movable platen is driven by servomotor at high speed to a die touch position. An error register of a servo circuit is supplied with distributed pulses which correspond to a moving amount from the die touch position to a set mold clamping force producing position. The movable platen is then driven in a mold clamping direction with a greater driving force by an induction motor. Thereafter, pulse signals outputted by a position detector are supplied to the error register corresponding to movement of the movable platen to gradually reduce an error value of the error register. When the error register value is reduced to zero, arrival at the set mold clamping force producing position is determined. Then, the induction motor is braked by a braking system so that the required mold clamping force is produced. Thereafter, the movable platen is driven by the servomotor at high speed in the mold opening direction.
Abstract:
A mold clamping device includes a frame, a fixed base for supporting a first mold, the fixed base being fixedly mounted on the frame, a movable base for supporting a second mold, the movable base being movably mounted on the frame in confronting relation to the fixed base, first means on the frame for driving the movable base to move rectilinearly toward and away from the fixed base, a cam follower supported on the movable base, a cam supported on the frame and having a cam surface held in contact with the cam follower, and second means for driving the cam in a mold clamping stroke to displace the cam follower for enabling the movable base to clamp the second mold firmly against the first mold on the fixed base, the cam surface being defined by a cam follower displacement curve having a gradient which is greater at an initial stage of the mold clamping stroke and becomes smaller as the mold clamping stroke progresses. When the cam is driven by the second means, the cam follower is displaced thereby to clamp the first and second molds together. The cam is small in size to make the mold clamping device small in size, and is high in rigidity to allow itself to be driven by a small force.
Abstract:
A tool for making a scroll for use in a scroll type fluid displacement apparatus is disclosed. The tool includes first and second molding members and an insertion member. The first molding element has an end plate and two involute wall elements extending from one side surface of the end plate to define two involute grooves, one wedge-shaped and the other rectangular in axial cross-section. A wedge-shaped insertion member is removably disposed in the wedge-shaped involute groove. The second molding member has an indentation in its axial end surface which defines an end plate of a scroll to be formed.
Abstract:
An injection mold with locking device comprises a fixed backing plate and a fixed mold part plate which are connected to each other by four tie rods. A movable mold part plate is connected to the fixed backing plate through a drive and locking mechanism which is capable of moving the movable mold part plate into a mold position with the fixed mold part plate. A thermal force control apparatus is associated with one or more of the tie rods for changing the temperature of the tie rods and thereby causing the tie rods either to expand or contract. By such expansion or contraction, the exact force applied between the fixed and movable mold part plates can be adjusted to a desired level.
Abstract:
An arrangement in connection with the die closing unit of an injection molding machine for interchangeably mounting to the rear side of the stationary die carrier plate differently spaced pairs of tie rods of injection units of different size, using two tie rod mounting sockets whch are clampable to the die carrier plate and thereby also serve to produce an axial preload on the tie rod connections of the die closing unit in the die carrier plate.