Abstract:
An image sensor and image sensor device include: a lighting portion extending in a main scanning direction and emitting light to the object-to-be-read; a rod lens array for imaging light from the object-to-be-read; and a light receiving portion for converting the light imaged by the rod lens array to an electric signal. The lighting portion emits a normally directed light from the normal direction of the object-to-be-read to irradiate a first irradiation region of the object-to-be-read, and an inclined light inclined by a predetermined angle from the normal direction of the object-to-be-read to irradiate a second irradiation region being apart from the first irradiation region in a sub-scanning direction.
Abstract:
An optical reader which reads image information on an original document by moving to the original document includes an illumination unit having at least one light source arranged on a substrate and illuminating the original document, a plurality of mirrors reflecting reflection light from the original document, a focusing lens focusing the reflection light from the original document reflected by the mirrors, and a photoelectric conversion element arranged in a focusing position of the focusing lens, a normal direction of an emission surface of the light source and a normal direction of a light-receiving surface of the photoelectric conversion element are the same direction, an original document reading position is set near an end portion of the optical reader in the normal direction.
Abstract:
An elongate light guide includes a light incident portion provided at an end in the longitudinal direction of the guide, a light reflecting portion extending in the longitudinal direction, a light emitting portion extending in the longitudinal direction for emitting linear light, and a scatterer for scattering the light entering through the light incident portion. For instance, the scatterer is provided as a grained portion formed at least part of the reflecting portion.
Abstract:
An image reader A1 according to the present invention comprises a pair of light source devices 3, a light guide member 4, a first and a second reflectors 7A and 7B, a plurality of light receiving elements 5, and a case 1. The image reader A1 further includes a first fitting contrivance 71 for positioning the first reflector 7A relative to the case 1 by inserting the first reflector 7A into the case 1 in the insertion direction z, a second fitting contrivance 72 for positioning the light guide member 4 relative to the case 1 by inserting the light guide member 4 into the case 1 in the insertion direction z, and a third fitting contrivance 73 for positioning the second reflector 7B relative to the case 1 by inserting the second reflector 7B into the case 1 in the insertion direction z.
Abstract:
An elongate light guide includes a light incident portion provided at an end in the longitudinal direction of the guide, a light reflecting portion extending in the longitudinal direction, a light emitting portion extending in the longitudinal direction for emitting linear light, and a scatterer for scattering the light entering through the light incident portion. For instance, the scatterer is provided as a grained portion formed at least part of the reflecting portion.
Abstract:
Transparency media adapter and methods of using the same. Implementations of a system may comprise an imaging device having a light source and at least one sensor. A media adapter operatively associated with the imaging device includes a first reflective surface and a second reflective surface arranged to shift light emitted by the light source to a predetermined focus point of the at least one sensor during an imaging operation.
Abstract:
A contact-type image sensor includes a case having an upper surface formed with an opening, a cover glass closing the opening and providing a linear reading region extending in the primary scanning direction. A sheet as an object to be read, coming into contact with the linear reading region, is reciprocally moved in the secondary scanning direction which is perpendicular to the primary scanning direction. The opening is defined by a pair of edges of the case spaced in the secondary scanning direction. Each of the edges includes a convex surface having a top positioned above the outer surface of the cover glass.
Abstract:
The present invention is a module for increasing total track, especially an application to an optical capturing device, thus the module for increasing total track may change its total track without re-laying out reflection positions and space in said optical capturing device; there are plural kinds of modules to be designed for different total tracks in the present invention, and said modules can be easily and fast substituted in the optical capturing device. The present invention is based on a theory of an incident angle equal to an ejective angle, thus a merge point can be predetermined by an incident light path and an ejective light path; aforesaid phenomenon is not only suitable an one-time reflection, but also plural reflections, and it can be applied in a module with either one reflection element or plural reflection elements.
Abstract:
A carrier device for a contact image sense optical scanner. The carrier device incorporates a pair of magnets with identical poles facing each other or a fluid filled sealed chamber for exerting an equal pressure on a scanning module within the scanner and maintaining close contact with a document platform throughout a scanning operation.
Abstract:
A method of making a casing of an image sensor is provided. The method includes the steps of preparing the casing, and applying a static electricity preventive to the casing. The casing is formed with a light passage configured to conduct light emitted from a light source. The static electricity preventive is applied to the inner surfaces of the casing defining the light passage. While the application of the preventive is performed, flashes formed at the light passage are removed.