Abstract:
This image reading apparatus, includes: a first retaining member that retains a lens unit; a second retaining member that retains a sensor unit; and a positioning member that sets a relative position between the first retaining member and the second retaining member, wherein the positioning member comprises: a first concave portion that is sagged from a first contact surface to be in contact with the first retaining member; and a second concave portion that is sagged from a second contact surface to be in contact with the second retaining member, and the positioning member is fixed to the first retaining member and the second retaining member by an adhesive filled in the first concave portion and the second concave portion.
Abstract:
In a line head, a plurality of light emitters are arrayed on a substrate in a first direction. Each of the light emitters is operable to emit a light beam. In a rod lens array, a plurality of rod lenses are arrayed in the first direction, and each of the rod lenses is adapted to focus the light beam emitted from an associated one of the light emitters onto a target surface. The substrate and the rod lens array are attached to a holder elongated in the first direction. Positioning members are provided at both end portions of the holder in the first direction. A relative position between the substrate and at least one of the positioning members is variable in a second direction perpendicular to the first direction.
Abstract:
According to an aspect of the invention, there is provided an image reading apparatus including: a first plate including a stationary document reading region; an image reader configured to scan a document on the first plate; a carriage supporting the image reader in a state that the carriage keeps the image reader predetermined distance from the first plate; and a guiding member that makes the image reader move downwardly by contacting an edge of the first plate.
Abstract:
A camera module and a portable electronic device using same are provided. The camera module can be rotated to align with a first camera window and a first aperture in the front of the portable electronic device or a second camera window and second aperture in the rear of the portable electronic device.
Abstract:
An inkjet printer that has a printhead with an elongate orifice plate and a surface that surrounds the elongate orifice plate, a platen that partially defines a media path extending passed the printhead, a capping member with a seal for sealing engagement with the surface that surrounds the printhead, and a static solenoid for moving the capping member in a direction perpendicular to the longitudinal extent of the elongate orifice plate. During use, the printhead, the media path and the platen all remain fixed relative to each other, and the capping member is movable through the media path. Providing a sealing surface around the orifice plate that is configured to engage the cap and seal the printhead requires less manufacturing precision than a capping mechanism that directly engages the orifice plate. Production efficiencies from lower precision assembly have particular significance for high volume products.
Abstract:
In a color marking assembly, a series of ROS units are aligned above a photoconductive surface. These units have inboard and outboard mounts connecting them to this assembly. The inboard mounts are attached to a first side of the ROS, and the outboard mounts are attached to a second side of the ROS unit.The inboard mount is an elongated bar extending beyond the height of the ROS unit. This elongated bar has hinged portions on both its top and bottom connections to the ROS unit. The outboard mount has a ball bearing or sphere configuration. This configuration and the inboard mount enable the ROS unit to be easily deskewed when required.
Abstract:
A platen for a print on demand digital device, such as a digital camera, is provided. The platen includes a print media transport roller located on a first side of a planar member to support print media. A cutting mechanism is located on a second opposite side of the planar member to sever the print media. The cutting mechanism includes a cutting wheel mounted to a block threaded on a rotating threaded rod. A pawl extends from the block and is arranged to incrementally rotate a counter wheel with each cutting action.
Abstract:
A reading-line adjusting device of an image scanner includes an image sensing module, a shaft, a bush member, and a fixing and adjusting member. The image sensing module has a reading line for sensing an electronic signal of an image. The shaft is arranged in a first direction. The bush member includes a base and a bushing body. The base is coupled with the image sensing module. The bushing body is sleeved around the shaft and moved along the shaft. The fixing and adjusting member is used for fixing the base of the bush member onto the image sensing module and adjusting an angle between the base and the image sensing module such that the reading line of the image sensing module is arranged in a second direction.
Abstract:
A document platen. A support member supports an end portion of the document platen from below in a sub scanning direction. A sensor module has a first protruding portion protruding in the sub scanning direction. The sensor module includes a first sensor, and a second sensor being shorter than the first sensor in length and being housed into the first protruding portion. A transport unit transports the sensor module in the sub scanning direction. When the sensor module is transported to an end part in the sub scanning direction, the support member is housed into a space disposed at a side of the first protruding portion in a main scanning direction.
Abstract:
An inkjet printer cartridge that has a. an orifice plate; and b. a platform surrounding said orifice plate, said platform defining a surface for sealably engaging a cap. By keeping the capping and maintenance separate from the replaceable cartridge, the production cost of the cartridge is reduced. Providing a support platform around the orifice plate that is configured to engage the cap and seal the printhead requires less manufacturing precision than a capping mechanism that directly engages the orifice plate. Production efficiencies from lower precision assembly have particular significance for high volume products.