Abstract:
A first base station receives a first message comprising one or more parameters indicating whether a wireless device supports configuration of a number of channel state information (CSI) processes. The first base station transmits at least one second message comprising configuration parameters of CSI reference signals. The first base station transmits, to a second base station after making a handover decision, at least one third message comprising at least one of the one or more parameters and the configuration parameters of the CSI reference signals.
Abstract:
A base station used in a wireless communications system with multiple transmission ranks is disclosed. The base station comprises a memory to store a codebook for a transmission rank, a beamforming controller to precode data with a precoding matrix selected from the codebook, and a transmitter to transmit the precoded data to a user equipment, wherein the precoding matrix is selected according to a first description and a second description, which are unique to the precoding matrix, and wherein the second description provides a finer description of the codebook than the first description. Other methods, systems, and apparatuses also are disclosed.
Abstract:
Various embodiments include an apparatus to be employed by an enhanced Node B (eNB), the apparatus comprising communication circuitry to receive, from a user equipment (UE), feedback information and control circuitry, coupled with the communication circuitry, to identify a codeword from a three-dimensional codebook based on the feedback information received from the UE, wherein the communication circuitry is further to precode data to be transmitted to the UE based on the codeword. An apparatus to be employed by a UE and additional methods are described.
Abstract:
Channel state information (CSI) feedback in a wireless communication system is disclosed. A precoding matrix is generated for multi-antenna transmission based on precoding matrix indicator (PMI) feedback, wherein the PMI indicates a choice of precoding matrix derived from a matrix multiplication of two matrices from a first codebook and a second codebook. In one embodiment, the first codebook comprises at least a first precoding matrix constructed with a first group of adjacent Discrete-Fourier-Transform (DFT) vectors. In another embodiment, the first codebook comprises at least a second precoding matrix constructed with a second group of uniformly distributed non-adjacent DFT vectors. In yet another embodiment, the first codebook comprises at least a first precoding matrix and a second precoding matrix, where said first precoding matrix is constructed with a first group of adjacent DFT vectors, and said second precoding matrix is constructed with a second group of uniformly distributed non-adjacent DFT vectors.
Abstract:
A base station receives a message comprising at least one index identifying a subset of a second plurality of beamforming codewords. Each of the second plurality of beamforming codewords is identifiable by an index presented by a number of bits. The number of bits is greater than or equal to log2(N), N being number of the second plurality of beamforming codewords, and less than number of bits in representation of a corresponding beamforming codeword. The base station transmits signals employing a first plurality of beamforming codewords being selected employing the subset of the second plurality of beamforming codewords.
Abstract:
A method performed by a network node (10) for finding a direction to a wireless device (20) in a wireless communication network is provided. The method comprises the step (S1) of the network node transmitting reference signal pairs on at least one pair of correlated antennas. Each reference signal pair has a unique phase difference between the signals in the signal pair, and the unique phase differences of the reference signal pairs are distributed over a given angular interval. The method further comprises the step (S2) of the network node receiving from the wireless device, in response to each pair of reference signals, a respective indication of a preferred pre-coding matrix, and the step (S3) of the network node determining a direction to the wireless device based on the received indications, information representative of the phase differences of the reference signal pairs, and phase information related to the indicated preferred pre-coding matrices.
Abstract:
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
A method and processing block for receiving data transmitted in a MIMO system is provided. Data is transmitted as a transmit vector of values from multiple transmitting antennas and received as a receive vector of values at multiple receiving antennas. Candidate vectors are determined based on each of a plurality of constellation points of the constellation configuration used in the transmission scheme. A channel matrix is decomposed into a unitary matrix and a triangular matrix, such that a relationship links: (i) a function of the unitary matrix and the receive vector, and (ii) a multiplication of the triangular matrix and the transmit vector. A best candidate vector from the set of candidate vectors is utilized for the computation of soft bits representing the values of the transmit vector.
Abstract:
A transmitter generates a first precoding vector for a first virtual antenna port among a plurality of virtual antenna ports using a first sequence having a constant magnitude and a discrete Fourier transform (DFT) vector sequence in a time domain and a frequency domain. The transmitter generates a plurality of second precoding vectors for the remaining virtual antenna port, except for the first virtual antenna port of the plurality of virtual antenna ports by circular shifting the first precoding vector. The transmitter maps a plurality of first data streams for the plurality of virtual antenna ports to a plurality of physical antenna ports using the first precoding vector and the plurality of second precoding vectors.
Abstract:
An acquiring unit acquires a channel matrix, which has elements representing the channel characteristics between a plurality of antennas at a transmitting side and a plurality of antennas at a receiving side, respectively. A first derivation unit derives not only a singular value matrix that is a diagonal matrix where singular values are arranged, by subjecting the channel matrix to the singular value decomposition, but also a weight matrix which is a unitary matrix corresponding to the singular value matrix. A second derivation unit derives the degree of difference between the singular values arranged in the singular value matrix. A determining unit determines whether or not the degree of difference lies within a predetermined range.