Abstract:
A process for managing interrupts, which may be performed using electronic circuitry, includes: receiving interrupts bound for a processing device, where the interrupts are received from hardware devices that are configured to communicate with the processing device; generating data containing information corresponding to the interrupts; and sending the data to the processing device.
Abstract:
Terminal diagnosis self correction is disclosed. A service inquiry is received regarding a problem with a terminal from a user. Terminal statistics are obtained remotely from the terminal and stored in a site diagnosis log. An initial diagnosis is determined with a site diagnostic tool using the terminal statistics. The initial diagnosis is stored in the site diagnosis log. A technician is dispatched to repair the terminal. Terminal statistics are obtained locally at the terminal and stored in an onsite validation tool log. An onsite diagnosis is determined using an onsite validation tool and stored the onsite validation tool log. The initial and onsite diagnoses are compared. In response to a difference between the initial and onsite diagnoses, the remotely and locally obtained terminal statistics are compared. The site diagnostic tool is adjusted based on the initial diagnosis, the onsite diagnosis, and the remote and local terminal statistics.
Abstract:
A fabric trace hook is disclosed to enable debugging operations of agents operating in a peer-to-peer integrated on-chip system fabric. The fabric trace hook, embedded within the IOSF, includes programmable triggering and capturing logic, timestamp capability, and a security feature to disallow tracing of proprietary transactions. The fabric trace hook may operate in a lossy or lossless mode.
Abstract:
A scalable test platform includes a PCIe-based event fabric. One or more instrument subsystems are coupled to the PCIe-based event fabric and configured to interface one or more devices under test and generate captured test data. One or more digital signal processing subsystems are coupled to the PCIe-based event fabric and configured to process the captured test data
Abstract:
A segmented subsystem, for use within an automated test platform, includes a first subsystem segment configured to execute one or more instructions within the first subsystem segment. A second subsystem segment is configured to execute one or more instructions within the second subsystem segment. The first subsystem segment includes: a first functionality, a second functionality, and a status polling engine. The status polling engine is configured to: determine a first status for the first functionality and a second status for the second functionality, and generate a consolidated status indicator for the first subsystem segment based, at least in part, upon the first status for the first functionality and the second status for the second functionality.
Abstract:
Terminal diagnosis self correction is disclosed. A service inquiry is received regarding a problem with a terminal from a user. Terminal statistics are obtained remotely from the terminal and stored in a site diagnosis log. An initial diagnosis is determined with a site diagnostic tool using the terminal statistics. The initial diagnosis is stored in the site diagnosis log. A technician is dispatched to repair the terminal. Terminal statistics are obtained locally at the terminal and stored in an onsite validation tool log. An onsite diagnosis is determined using an onsite validation tool and stored the onsite validation tool log. The initial and onsite diagnoses are compared. In response to a difference between the initial and onsite diagnoses, the remotely and locally obtained terminal statistics are compared. The site diagnostic tool is adjusted based on the initial diagnosis, the onsite diagnosis, and the remote and local terminal statistics.
Abstract:
A method and a system for controlling a state machine are described. In the method, a script is used via which each arbitrary path in the state machine. The script is created using a language which includes the “data” command, the “data” command allowing reading and writing of data.
Abstract:
A device and method for providing computer operation diagnostics. The method includes coupling a mobile device (such as a mobile smartphone) to the computer via a diagnostic port. The smartphone has a diagnostic program (application) thereon that is initiated so as to be able to communicate with a diagnostic module within the computer to request and receive information from the computer.
Abstract:
A process for managing interrupts, which may be performed using electronic circuitry, includes: receiving interrupts bound for a processing device, where the interrupts are received from hardware devices that are configured to communicate with the processing device; generating data containing information corresponding to the interrupts; and sending the data to the processing device.
Abstract:
A method for testing a device under test (DUT) during a test sequence. In accordance with one embodiment, during a regular, pre-defined test sequence, data packets are transferred from a tester to a device under test (DUT) containing data related to at least one of an identification parameter of the DUT, an operational characteristic of the DUT and a request for data. Examples of such transferred data include address data for identifying the DUT (e.g., a unique media access control (MAC) address) and calibration data for controlling an operational characteristic of the DUT (e.g., signal power levels, signal frequencies or signal modulation characteristics). In accordance with another embodiment, the DUT retrieves and transmits data to the tester, either in response to the request for data or as a preprogrammed response to its synchronization with the tester.