Abstract:
An LED illuminating device includes a printed circuit board, at least one LED chip group arranged on the printed circuit board, and a lens assembly, wherein the LED illuminating device further includes a reflector provided between the LED chip group and the lens assembly, wherein the reflector is configured to diffusely reflect light from the LED chip group so that the light is uniformized and emerges in a direction of the lens assembly.
Abstract:
A light emitting diode (LED) signal lamp includes a lamp housing having at least one light opening, a power connection mounted on the lamp housing for connection to a power cable, a plurality of LEDs mounted within the lamp housing to shine through the at least one light opening when powered, and a control circuit for supplying electrical power to the plurality of LEDs via the power connection. The control circuit is configured to permit the LED signal lamp to safely, reliably and effectively interact with wayside control systems designed for incandescent signal lamps.
Abstract:
A headlamp assembly comprising a housing forming an internal chamber and forming an opening to one side, at least a first light source having a first illumination axis, the first light source mounted in a central portion of the internal chamber substantially at a first depth, at least a second light source having a second illumination axis, the second light source mounted in a circumferential portion of the chamber substantially at a second depth wherein the first depth is greater than the second depth, a first aspherical lens formed about a first optic axis, the first aspherical lens mounted within the opening with the first optic axis coaxially aligned with the first illumination axis and a second aspherical lens formed about a second optic axis, the second aspherical lens mounted within the opening with the second optic axis coaxially aligned with the second illumination axis.
Abstract:
A system is provided for monitoring power consumption of a light emitting diode (LED) lamp. The system includes a first sensor, a second sensor and a processor. The first sensor is associated with a voltage level. The second sensor is associated with a current level light emitting diode and a monitoring module. Further, the processor is configured to receive a voltage signal from the first sensor and a current level signal from the second sensor and determine a power level consumption of the LED lamp.
Abstract:
A lamp for safety signalling is disclosed. The lamp uses quantum dot phosphors to down-convert light from a primary light source and provide red or green light.
Abstract:
For signal luminaires which indicate the term STOP or DANGER upon activation, a circuit containing a first operating case feed unit and a second auxiliary source is provided for the purpose of supplying a reliable power supply. In this case, the second auxiliary source is inductively coupled to the signal luminaire electric circuit; while the signal luminaires are capacitively coupled to ground. The use of switches during operation in a fall-back level is obviated in this way.
Abstract:
An autonomous vehicle collision/crossing warning system provides for simple, inexpensive and decentralized installation, operation and maintenance of a reliable vehicle collision/crossing warning system. The autonomous warning system preferably utilizes a single frequency TDM radio communication network with GPS clock synchronization, time slot arbitration and connectionless UDP protocol to broadcast messages among vehicles and components in the warning system. Adaptive localized mapping of components of interest within the warning system eliminates the need for centralized databases or coordination and control systems and enables new vehicles and warning systems to be easily added to the system in a decentralized manner. Preferably, stationary warning systems are deployed as multiple self-powered units each equipped to receive broadcast messages and to communicate with the other units by a low power RF channel in a redundant Master-Slave configuration. The communication schemes are preferably arranged for low duty cycle operation to decrease power consumption.
Abstract:
An emulation circuit is disclosed for connection to a low energy lamp energized by an AC supply and substituted for an incandescent lamp in a traffic signal installation. The circuit comprises means for sensing the magnitude of a supply voltage applied to energize the lamp connected to the terminals and means for sensing correct operation of the lamp. When the lamp is sensed to be operating correctly an auxiliary load intermittently to draw an additional current through the auxiliary load from the AC supply. The additional current is drawn only between preset phase angles of the cycles of the AC supply and the magnitude of the additional current drawn by the auxiliary load is varied in dependence upon the sensed magnitude of the supply voltage.
Abstract:
A method for operating a signal lamp (1), in particular a railway signal lamp, wherein the signal lamp (1) comprises as its illuminant at least one light emitting diode (=LED) (2), and wherein the luminous intensity of the signal lamp (1) is adapted to the brightness of the surrounding, is characterized in that the at least one LED (2) is operated during first time intervals as the illuminant of the signal lamp (1), and during second time intervals, the at least one LED (2) is operated as a photo diode, that first and second time intervals alternate over time, in particular periodically, and that the output voltage of the LED (2) during the second time intervals is used to control the operating current of the at least one LED (2) during first time intervals. The inventive method does without a separate sensor, thus allowing the use of a corresponding signal lamp arrangement which is simple and inexpensive.
Abstract:
An emulation circuit is disclosed for connection to a low energy lamp energised by an AC supply and substituted for an incandescent lamp in a traffic signal installation. The circuit comprises means for sensing the magnitude of a supply voltage applied to energise the lamp connected to the terminals and means for sensing correct operation of the lamp. When the lamp is sensed to be operating correctly an auxiliary load intermittently to draw an additional current through the auxiliary load from the AC supply. The additional current is drawn only between preset phase angles of the cycles of the AC supply and the magnitude of the additional current drawn by the auxiliary load is varied in dependence upon the sensed magnitude of the supply voltage.