Abstract:
System and method for a virtual crossing alert system that provides a notification, an alert, or a command to an alert receiving system depending on the spatial relationships of actors within a specified area.
Abstract:
The present invention is directed to a vehicle barrier system and method of use. The vehicle barrier system includes a control system adapted to pivot a gate arm between a horizontal position and a vertical position to control the flow of vehicle or pedestrian traffic in control access areas such as parking lots, or parking garages. The gate arm includes inset channels that are disposed along the longitudinal axis of the gate arm and configured to each remove ably receive an array of light emitting diodes to increase visibility and alert drivers or pedestrians to the presence of a gate arm.
Abstract:
A synthetic image is produced which will be viewed by an operator of a train to provide the operator with important information indicative of the environment to be encountered by the train during subsequent movement of the train. This information includes information about upcoming track and highway crossings. The synthetic image may be utilized during all periods of operation of the train but will be particularly desirable during night and during periods of bad weather, such as rain, snow and fog, when normal vision is limited. The system utilizes accurate measurement of the location of the train, accurate knowledge of the path of the track and accurate knowledge of placement of track and highway crossings. Automated horn soundings, or monitoring of manual operator activations, significantly enhance safety at such track and highway crossings.
Abstract:
A hazard mitigation system to detect an object in a highway-railway grade crossing. A structure is provided that includes a fixed foundation and a surface layer that is cushionably placed above the foundation, such that the structure is located between tracks at the crossing. At least one sensor is mounted between the surface layer and the foundation. This sensor senses the weight of the object upon the surface layer and provides a sensor signal representative of that weight. A control unit receives the sensor signal, processes it to determine whether the object represents a potential hazard, and, if so generates a warning signal. The sensor can particularly include a pressure or strain gage, or a fiber optic sensor. When a fiber optic sensor is employed, it can particularly include a fiber Bragg grating.
Abstract:
A method and system for automatically activating a train warning device that uses a positioning system such as a global positioning system (GPS) receiver or an inertial navigation system (INS) to determine the train's position. The system further includes a database containing locations of grade crossings and other locations at which a train is required to give a warning signal and what regulations govern activation of the warning device at such locations.
Abstract:
A vehicle-based navigation system is described including a position locator that establishes the geographic position of the vehicle and a map database located external to and remote from the vehicle. The system determines at least one of a vehicle parameter and a personal parameter, and transfers data from the remote map database to the vehicle and displays the data in the vehicle at a resolution that is a function of at least one of a vehicle parameter and a personal parameter.
Abstract:
A railroad grade crossing warning device designed to operate at un-guarded grade crossings without the need for expensive train detection sensors. The system utilizes the sound of an approaching locomotive horn or whistle to activate a warning at a grade crossing. The preferred device is self contained and is powered by solar panel and storage battery to provide a flashing strobe warning on the approach of a train.
Abstract:
With the vehicle anti-collision system of the present invention, road vehicles in the vicinity of a railway crossing are alerted as a train approaches the crossing. A signalling device operating in conjunction with a GPS receiver located in the train emits a signal to a receiver located at the railway crossing to provide an indication of the rail vehicle's location with respect to the railway crossing. The signal is sent continuously at predetermined intervals to provide the railway crossing with sufficient data to estimate the velocity and time of arrival of the train or railway vehicle at the crossing. The railway crossing processes the information and transmits an alarm signal to approaching road vehicles as the rail vehicle approaches the crossing. The signal emitted by the crossing is received at the road vehicle which provides various levels of alarms depending on how close the rail vehicle is to the crossing. The communications between the railroad vehicle and the crossing monitor are preferably by satellite link. A sensor is also preferably provided at the crossing to detect an object on the crossing when the rail vehicle is approaching.
Abstract:
With the vehicle anti-collision system of the present invention, road vehicles in the vicinity of a railway crossing are alerted as a train approaches the crossing. A signalling device operating in conjunction with a GPS receiver located in the train emits a signal to a receiver located at the railway crossing to provide an indication of the rail vehicle's location with respect to the railway crossing. The signal is sent continuously at predetermined intervals to provide the railway crossing with sufficient data to estimate the velocity and time of arrival of the train or railway vehicle at the crossing. The railway crossing processes the information and transmits an alarm signal to approaching road vehicles as the rail vehicle approaches the crossing. The signal emitted by the crossing is received at the road vehicle which provides various levels of alarms depending on how close the rail vehicle is to the crossing.
Abstract:
A railroad crossing gate arm electrical lamp system provides two flashing lamps and one continuously operated lamp. Each of the lamps has an internal electrical circuit with the internal electrical circuits being identical for each lamp. This permits the lamps to be interchanged in position with the lamp positions determining the function of the lamp. Each lamp electricl circuit has a three-wire input connection and a three-wire output connection. There are identical and reversible three-wire cables connecting the first flashing lamp with the second flashing lamp and the second flashing lamp with the continuously operated lamp. The input for the first flashing lamp includes two power supply terminals and a third common terminal. The lamps are connected in series across the power supply and a relay alternately shunts the lamps to obtain flashing of two of the lamps. The third lamp is connected across the power supply for steady light.