Abstract:
An image reading device includes a plurality of readers, an access opening, and a lift. The plurality of readers read an image on a recording medium. The plurality of readers are arranged around a carrier to rotate while carrying the recording medium on a peripheral surface of the carrier. The plurality of readers are arranged radially about a rotation axis of the carrier. The plurality of readers are to be introduced through the access opening. The lift includes a cable to lift one reader of the plurality of readers introduced through the access opening. The lift lifts and locates the one reader at a predetermined height position around the carrier with the cable.
Abstract:
A medium-discharging device includes: a medium-discharging section that discharges a medium; a medium-receiving tray that receives the medium discharged by the medium-discharging section; a light-emitting section that emits light to the medium-receiving tray; and a control section that controls the light-emitting section, in which the medium-receiving tray is configured to switch between a first state in which the medium-receiving tray is stored in an apparatus main body that includes the medium-discharging section and a second state in which the medium-receiving tray protrudes from the apparatus main body, and the control section controls the light-emitting section in accordance with a state or operation of the medium-receiving tray.
Abstract:
A calibration apparatus is disclosed herein. An example includes a printing mechanism, a media control mechanism, a sensor, and a processor. The processor controls the printing mechanism to print a first pattern of first elements on a print medium and a second pattern of second elements on the print medium that are interleaved with the first elements. The processor also actuates the media control mechanism to advance the print medium, determines a centroid of at least one of the first elements based on a first measured reflectance by the sensor, and determines a centroid of at least one of the second elements based on a second measured reflectance by the sensor. The processor also determines a print medium advance error based on the at least one determined centroid of the first elements and the at least one determined centroid of the interleaved second elements.
Abstract:
A method for printing a digitally-stored image on the surface of a cylindrical object comprises the steps of axially moving the object along a line of travel that is aligned with the object's long axis until it is underneath one or more printheads, each of which have a plurality of ink nozzles that may be arranged in one or more columns while simultaneously rotating the object with respect to the printheads and simultaneously causing a pre-determined number of nozzles to eject ink onto the surface of the object.
Abstract:
A cartridge includes a substrate and an engagement portion. The first surface faces a first direction and has a first surface on which an electrical terminal is disposed. The engagement portion includes a second surface disposed upstream from the substrate in the first direction and a third surface. The second surface faces a second direction, which forms an obtuse angle with the first direction. The third surface faces a third direction, which forms an acute angle with the first direction. The third surface does not overlap with the substrate in the first direction and the third surface is disposed downstream from the second surface in the first direction.
Abstract:
A cartridge includes a substrate and an engagement portion. The first surface faces a first direction and has a first surface on which an electrical terminal is disposed. The engagement portion includes a second surface disposed upstream from the substrate in the first direction and a third surface. The second surface faces a second direction, which forms an obtuse angle with the first direction. The third surface faces a third direction, which forms an acute angle with the first direction. The third surface does not overlap with the substrate in the first direction and the third surface is disposed downstream from the second surface in the first direction.
Abstract:
A cartridge includes a substrate and an engagement portion. The first surface faces a first direction and has a first surface on which an electrical terminal is disposed. The engagement portion includes a second surface disposed upstream from the substrate in the first direction and a third surface. The second surface faces a second direction, which forms an obtuse angle with the first direction. The third surface faces a third direction, which forms an acute angle with the first direction. The third surface does not overlap with the substrate in the first direction and the third surface is disposed downstream from the second surface in the first direction,
Abstract:
A system and method that enables web paper skew detection by monitoring print head motor position. An inline full width array sensor actively tracks the alignment of the print heads across the print zone and actively moves the heads to maintain alignment. If the paper starts to skew across the print zone, a color misregistration error will be detected and the print units will be moves with respect to each other to maintain alignment. The absolute position of the print heads can be monitored by tracking the steps sent to each motor to maintain alignment.
Abstract:
In a digital printer the elements involved directly in the print process, which are located on a shuttle assembly are mounted upon a metrological frame which is isolated from the base frame by vibration dampers. Because the elements of the shuttle drive systems, such as a belt drive system having a motor and pulleys, are mounted upon the base frame, the drive and reaction forces from the motor drive systems are led to the base frame while the shuttles assembly is guided by the force-free, vibration free metrological frame. This allows for higher accuracy during printing as the metrological frame serves as a vibration free reference element.
Abstract:
An ink jet recording apparatus includes a sub scanning driving unit which carries a recording medium in a sub scanning direction, a line-type ink jet recording head in which plural nozzles ejecting ink synchronously with the carrying of the recording medium by the sub scanning driving unit are arrayed in a main scanning direction orthogonal to the sub scanning direction, a recording medium supply unit which supplies the recording medium to the sub scanning driving unit along the sub scanning direction, a main scanning driving unit which drive-controls the ink jet recording head on the basis of an image signal and causes the plural nozzles to selectively eject ink, and a nozzle position change unit which changes position where the plural nozzles eject ink, after shifting a relative positional relation between the recording medium and the plural nozzles.