Abstract:
A process for mask-free localized grafting of organic molecules capable of being electrically activated, onto a composite surface comprising conductive and/or semiconductive portions, by placing said organic molecules in contact with said composite surface, in which said grafting is performed electrochemically in a single step on chosen, defined areas of said conductive and/or semiconductive portions, said areas being brought to a potential higher than or equal to a threshold electrical potential determined relative to a reference electrode, said threshold electrical potential being the potential above which grafting of said organic molecules takes place.
Abstract:
A thermally and electrically conductive structure comprises a carbon nanotube (110) having an outer surface (111) and a carbon coating (120) covering at least a portion of the outer surface of the carbon nanotube. The carbon coating may be applied to the carbon nanotube by providing a nitrile-containing polymer, coating the carbon nanotube with the nitrile-containing polymer, and pyrolyzing the nitrile-containing polymer in order to form the carbon coating on the carbon nanotube. The carbon nanotube may further be coated with a low contact resistance layer (130) exterior to the carbon coating and a metal layer (140) exterior to the low contact resistance layer.
Abstract:
The invention refers to a method for forming particles or droplets of at least one substance comprising the steps of providing a foamed medium, which foamed medium comprises said substance, and forming particles or droplets of said substance at least partly by electrostatic processing. The use of foamed medium in electrostatic processing enables higher production speeds and increases the evenness of a coating layer formed by electrospinning or electrospraying the particles or droplets on a substrate.
Abstract:
A process for coating electrically conductive substrates by (1) applying an electrocoat film to an electrically conductive substrate and curing it to give an electrocoat and then (2) applying a layer of a pulverulent coating material to the electrocoat and curing it to give a powder coat or alternatively (1) applying an electrocoat film to an electrically conductive substrate and drying it without fully curing it, (2) applying a layer of a pulverulent coating material to the dried electrocoat film(s) and (3) jointly curing the dried electrocoat film and the layer of the pulverulent coating material to give the electrocoat and the powder coat wherein the pulverulent coating material comprises (A) at least one epoxy resin having a melting point, melting range or glass transition temperature>30° C., (B) at least one carboxyl-containing polyester resin having a melting point, melting range or glass transition temperature>30° C., and (C) at least one polycarboxylic acid having a melting point of between 80 and 160° C.
Abstract:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
Abstract:
The present invention provides a coating method comprising steps of applying a metallic base coating (A) containing a effective pigment on a surface to be coated and subsequently applying a colored clear coating (B) thereon, wherein the metallic base coating (A) forms a coating film having a IV value of 230 or more and a measured value of particle feeling (HG value) on a micro brilliance feeling-measuring apparatus of 60 or less. The method of the present invention is suitable as a top coating for outer panels of automobiles and the like.
Abstract:
In one aspect, a method of nanolithography is provided, the method comprising providing a substrate; providing a scanning probe microscope tip; coating the tip with a deposition compound; and subjecting said coated tip to a driving force to deliver said deposition compound to said substrate so as to produce a desired pattern. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
Abstract:
This invention relates to a method for forming a multi-layer coating on a vehicle body, comprised of applying primer coating, base coating, and clear coat layers in a wet-on-wet-on-wet manner, and simultaneously curing the applied three layers together in a single baking step. The primer layer comprises a film-forming binder (a) a caprolactone-modified linear acrylic polymer; and (b) an aminoplast resin crosslinking agent, wherein the composition is essentially free of crosslinked nonaqueous dispersion resin particles or crosslinked microgel resin particles or both. The resulting multi-layered coating film has excellent aesthetic appearance, strike-in resistance, chipping resistance, sag resistance, and film build even when formed in a three wet layered application method.
Abstract:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN and kits for performing DPN.The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
Abstract:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN and kits for performing DPN.The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.