Abstract:
A method for forming an ink jet printhead comprises processing an epoxy adhesive such that negative effects from physical contact with particular inks are reduced or eliminated. Conventional adhesives processed using conventional techniques are known to gain weight and squeeze out when exposed to certain inks such as ultraviolet inks, solid inks, and aqueous inks. An embodiment of the present teachings can include processing of a particular adhesive such that the resulting epoxy adhesive is suitable for printhead applications.
Abstract:
A method for forming a plurality of electrostatic actuator membranes for an electrostatically actuated ink jet printhead. The method can include forming a blanket actuator membrane layer on an etch stop layer, where the etch stop layer is interposed between the blanket membrane layer and a handle layer such as a semiconductor wafer. The blanket actuator membrane layer is patterned to form a plurality of actuator membranes. The plurality of actuator membranes is attached to a printhead drive assembly that includes circuitry for actuating the plurality of actuator membranes. Subsequently, the handle layer and etch stop layer are removed, thereby leaving the plurality of actuator membranes attached to the printhead drive assembly.
Abstract:
A method for forming a plurality of electrostatic actuator membranes for an electrostatically actuated ink jet printhead. The method can include forming a blanket actuator membrane layer on an etch stop layer, where the etch stop layer is interposed between the blanket membrane layer and a handle layer such as a semiconductor wafer. The blanket actuator membrane layer is patterned to form a plurality of actuator membranes. The plurality of actuator membranes is attached to a printhead drive assembly that includes circuitry for actuating the plurality of actuator membranes. Subsequently, the handle layer and etch stop layer are removed, thereby leaving the plurality of actuator membranes attached to the printhead drive assembly.
Abstract:
A flex circuit board provides islands of electrically isolated material surrounding openings in the flex circuit board to preserve fluid integrity of passageways passing through an electrically insulating layer of the flex circuit board. The electrically isolated islands surround exits of the passageways through the electrically insulating material and extend the passageways through an electrically conductive layer of the flex circuit board. Consequently, fluid passing through the passageways and electrically isolated islands in the flex circuit board is not subjected to electrical current.
Abstract:
A method for forming an ink jet printhead comprises processing an epoxy adhesive such that negative effects from physical contact with particular inks are reduced or eliminated. Conventional adhesives processed using conventional techniques are known to gain weight and squeeze out when exposed to certain inks such as ultraviolet inks, solid inks, and aqueous inks. An embodiment of the present teachings can include processing of a particular adhesive such that the resulting epoxy adhesive is suitable for printhead applications.
Abstract:
A method and structure for forming an ink jet printhead can include the use of a transfer pad to transfer an adhesive solution to an ink jet printhead substrate. The adhesive solution can be placed within a patterned recess of a cliché and then an upper surface of the adhesive solution can be gelled. A surface of the transfer pad contacts the gelled upper surface and transfers the adhesive solution to the ink jet printhead substrate. During the transfer, a lower surface of the adhesive solution gels. During contact with the ink jet printhead substrate, the gelled lower surface adheres to the ink jet printhead substrate while the gelled upper surface releases from the transfer pad.
Abstract:
A 3D printer includes a nozzle configured to jet a drop of liquid metal therethrough. The 3D printer also includes a light source configured to illuminate the drop with a pulse of light. A duration of the pulse of light is from about 0.0001 seconds to about 0.1 seconds. The 3D printer also includes a camera configured to capture an image, video, or both of the drop. The 3D printer also includes a computing system configured to detect the drop in the image, the video, or both. The computing system is also configured to characterize the drop after the drop is detected. Characterizing the drop includes determining a size of the drop, a location of the drop, or both in the image, the video, or both.
Abstract:
Nozzles for an additive manufacturing device and methods for improving wettability of the nozzles are disclosed. The method may include subjecting the nozzle to a surface treatment. The surface treatment may include contacting a surface of the nozzle with one or more surface modifying agents. The surface modifying agents may include one or more of an oxidizing agent, an acid, a base, or combinations thereof. The one or more surface modifying agents may increase an oxygen content of the surface of the nozzle. An inner surface of the nozzle may have a water contact angle of greater than 1° and less than about 90°. The inner surface of the nozzle may be free or substantially free of a coating.
Abstract:
A method for identifying an angular deviation in the orientation of a multi-nozzle extruder includes moving the multi-nozzle extruder in a first process direction to form a first extrusion material swath and moving the multi-nozzle extruder in a second process direction opposing the first process direction to form a second extrusion material swath. The method further includes identifying widths and heights of the swaths from scanned image data and identifying a component of angular deviation for the multi-nozzle extruder with reference to at least one of a difference between the first swath width and the second swath width and another difference between the first swath height and the second swath height.
Abstract:
A method for identifying an angle of roll for a multi-nozzle extruder includes moving the extruder in a first process direction to form a first set of swaths of extrusion material using two nozzles in the extruder and moving the extruder in a second process direction to form a second set of swaths of extrusion material. The method further includes identifying a location of one nozzle relative to the other nozzle in two dimensions based on cross-process direction distances between the first and second sets of swaths and identifying the angle of extruder roll for the extruder based on the location of the one nozzle and a predetermined geometry of the extruder.