Abstract:
What is disclosed is a system and method for compensating for motion induced artifacts in physiological signals extracted from a video of a subject being monitored for a physiological function in a non-contact, remote sensing environment. The present method identifies a center frequency from a physiological signal obtained from processing a prior video segment. Since a moment to moment change in pulse frequency from one video segment to a next is not very large, signals obtained from sequential video segments can be repeatedly processed and an adaptive band-pass filter repeatedly re-configured and used to filter a next video segment, and so on. Using the teachings disclosed herein, a motion-compensated continuous cardiac signal can be obtained for the subject for continuous monitoring of the subject's cardiac function via video imaging. The teachings hereof provide an effective means for compensating for movement by the subject during video acquisition. Various embodiments are disclosed.
Abstract:
What is disclosed is a system and method for compensating for motion during processing of a video of a subject being monitored for physiological function assessment. In one embodiment, image frames are received. Successive batches of N video frames are processed to isolate pixels associated with a body region of the subject where a physiological signal is registered by the camera. The pixels are processed to obtain a time-series signal for each batch. A determination is made whether movement during video acquisition of this batch of image frames exceeds a threshold level. If so then a size N of the next batch of image frames is changed to: N=N+M1, where N+M1≦Nmax. Otherwise, a size N of a next batch is changed to: N=N−M2, where N−M2≧Nmin. Thereafter, processing repeats in a real-time continuous manner as the next batch of the N image frames is received. Various embodiments are disclosed.
Abstract:
What is disclosed is a system and method for determining a subject of interest's arterial pulse transit time from time-varying source signals generated from video images. In one embodiment, a video imaging system is used to capture a time-varying source signal of a proximal and distal region of a subject of interest. The image frames are processed to isolate localized areas of a proximal and distal region of exposed skin of the subject. A time-series signal for each of the proximal and distal regions is extracted from the source video images. A phase angle is computed with respect to frequency for each of the time-series signals to produce respective phase v/s frequency curves for each region. Slopes within a selected cardiac frequency range are extracted from each of the phase curves and a difference is computed between the two slopes to obtain an arterial pulse transit time for the subject.
Abstract:
What is disclosed is a system and method for estimating cardiac pulse rate from a video of a subject being monitored for cardiac function. In one embodiment, batches of overlapping image frames are continuously received and processed by isolating regions of exposed skin. Pixels of the isolated regions are processed to obtain a time-series signal per region and a physiological signal is extracted from each region's time-series signals. The physiological signal is processed to obtain a cardiac pulse rate for each region. The cardiac pulse rate for each region is compared to a last good cardiac pulse rate from a previous batch to obtain a difference. If the difference exceeds a threshold, the cardiac pulse rate is discarded. Otherwise, it is retained. Once all the regions have been processed, the retained cardiac pulse rate with a minimum difference becomes the good cardiac pulse rate for comparison on a next iteration.
Abstract:
What is disclosed is a system and method for assessing peripheral vascular disease from a thermal image captured using a thermal imaging system. In one embodiment the present method involves the following. First, a thermal image is received of a region of exposed skin of a peripheral body part of a subject being monitored for PVD. The thermal image was acquired by a thermal imaging system. Pixels in the thermal image each have a corresponding temperature value. The thermal image is analyzed to stratify the peripheral body part into a plurality of skin surface regions. A skin surface temperature for each respective skin surface region is identified based on pixels in the thermal image associated with those regions. The temperatures are then extracted such that a progression of temperatures can be ascertained. A method for forecasting the progression for future times is also disclosed.
Abstract:
A system is provided comprising: a light field emanating from a scene and a positive imaging lens focusing light from the light field onto a DMD array. A first collector lens directs the spatially modulated light to a first photodetector having a spectral sensitivity to a first spectral band. The first photodetector senses the directed light from the first pixel-wise multiplication and produces a signal representing a first inner product between the light incident on the DMD and the first basis function for the first spectral band. A second collector lens directs the spatially modulated light to a second photodetector having a spectral sensitivity to a second spectral band. The second photodetector senses the directed light from the first pixel-wise multiplication and produces a signal representing a first inner product between the light incident on the DMD and the first basis function for the second spectral band.
Abstract:
Disclosed herein is a single-pixel camera system and method for performing spot/area measurement of a localized area of interest identified in a scene and for performing spatial scene reconstruction. A switching module enables a single-pixel camera to alternate between a spot/area measurement mode and a spatial scene reconstruction mode. In the case where the operative mode is switched to spot measurement, a light modulation device is configured to modulate incoming light according to a clustered pattern that is specific to a localized area of interest intended to be measured by integrating across the pixels to generate an integral value. In the case where the operative mode is switched to spatial scene reconstruction, the light modulation device can be configured to modulate incoming light to display a spatial pattern corresponding to a set of predetermined basis functions.
Abstract:
A system is provided comprising: a light field emanating from a scene and a positive imaging lens focusing light from the light field onto a DMD array. A first collector lens directs the spatially modulated light to a first photodetector having a spectral sensitivity to a first spectral band. The first photodetector senses the directed light from the first pixel-wise multiplication and produces a signal representing a first inner product between the light incident on the DMD and the first basis function for the first spectral band. A second collector lens directs the spatially modulated light to a second photodetector having a spectral sensitivity to a second spectral band. The second photodetector senses the directed light from the first pixel-wise multiplication and produces a signal representing a first inner product between the light incident on the DMD and the first basis function for the second spectral band.