Abstract:
An image processing method is provided. The method includes obtaining a human facial image and providing a total of n number of source images in a preconfigured file, where n is an integer greater than 2, and each source image corresponds to adjusting parameters for the source image in the preconfigured file. The method also includes generating a synthesized human facial image for the each source image by adjusting the human facial image based on the adjusting parameters corresponding to the source image in the preconfigured file, individually synthesizing the each source image and the synthesized human facial image for the each source image to obtain n number frames of synthesized images, and combining the n number frames of synthesized images into a dynamic image in a time order.
Abstract:
The present disclosure discloses method and apparatus for lossless image compression, and relates to the field of computer technologies. The method includes: removing ancillary information and redundant information from a picture having a predefined format in a preset manner; decompressing the picture to restore original picture data of the picture; and setting a compression parameter for the original picture data of the picture and compressing the original picture data of the picture into a picture having the same format before the picture decompression using the compression parameter. According to the present disclosure, ancillary data and redundant data in a picture are removed, and after decompression is performed on the picture, the picture is compressed again according to a preset compression parameter, so that based on lossless compression, a compression rate of the picture is increased, and storage space is saved.
Abstract:
The present disclosure provides an image compression method and system. The method includes: receiving, by an access server, an image compression request submitted by a terminal; selecting, by the access server according to the image compression request's time information, an image compression server whose load is lower than a preset threshold, and sending the image compression request to the selected image compression server; compressing, by the selected image compression server, the images according to the image compression request, saving the compressed images, and forwarding URL addresses of the compressed images to the access server; and forwarding, by the access server, the URL addresses to the terminal. In the present disclosure, an image compression system processes an image compression request of a terminal, and performs load balancing automatically according to the load of various image compression servers in the system, thereby implementing automatic processing of mass images of the terminal.
Abstract:
An image processing method includes performing additional image feature extraction on a training source face image to obtain a source additional image feature, performing identity feature extraction on the training source face image to obtain a source identity feature, inputting a training template face image into an encoder in a to-be-trained face swapping model to obtain a face attribute feature, inputting the source additional image feature, the source identity feature, and the face attribute feature into a decoder in the face swapping model for decoding to obtain a decoded face image, obtaining a target model loss value based on an additional image difference between the decoded face image and a comparative face image, and adjusting the model parameters of the encoder and the decoder based on the target model loss value to obtain the trained face swapping model.
Abstract:
Disclosed herein are an image detection method and apparatus, a computer-readable storage medium, and a computer device. The method includes iteratively training a plurality of neural network models to obtain a plurality of trained neural network model; and performing detection on an image to be detected using the trained plurality of neural network models to obtain a detection result. Each iteration of training includes: for each of a plurality of sample images, separately inputting the sample image into the neural network models to obtain a fuzzy probability value set, and calculating, based on the fuzzy probability value set and preset label information of the sample image, a loss parameter of the sample image; selecting target sample images based on a distribution of loss parameters of the plurality of sample images; and updating the plurality of neural network models based on the target sample images.
Abstract:
An identity verification method performed at a terminal includes playing in an audio form action guide information including mouth shape guide information selected from a preset action guide information library at a speed corresponding to the action guide information, and collecting a corresponding set of action images within a preset time window; performing matching detection on the collected set of action images and the action guide information, to obtain a living body detection result indicating whether a living body exists in the collected set of action images; according to the living body detection result that indicates that a living body exists in the collected set of action images: collecting user identity information and performing verification according to the collected user identity information, to obtain a user identity information verification result; and determining the identity verification result according to the user identity information verification result.
Abstract:
A method and an apparatus for training a voiceprint recognition system are provided. The method includes obtaining a voice training data set comprising voice segments of users; determining identity vectors of all the voice segments; identifying identity vectors of voice segments of a same user in the determined identity vectors; placing the recognized identity vectors of the same user in the users into one of user categories; and determining an identity vector in the user category as a first identity vector. The method further includes normalizing the first identity vector by using a normalization matrix, a first value being a sum of similarity degrees between the first identity vector in the corresponding category and other identity vectors in the corresponding category; training the normalization matrix, and outputting a training value of the normalization matrix when the normalization matrix maximizes a sum of first values of all the user categories.
Abstract:
A voice data processing method and apparatus are provided. The method includes obtaining an I-Vector vector of each of voice samples, and determining a target seed sample in the voice samples. A first cosine distance is calculated between an I-Vector vector of the target seed sample and an I-Vector vector of a target remaining voice sample, where the target remaining voice sample is a voice sample other than the target seed sample in the voice samples. A target voice sample is filtered from the voice samples or the target remaining voice sample according to the first cosine distance, to obtain a target voice sample whose first cosine distance is greater than a first threshold.
Abstract:
A sign-in method and server based on facial recognition are provided. The method includes: receiving a face image of a sign-in user from a sign-in terminal. According to the face image of the sign-in user, whether a target registration user matching the sign-in user exists in a pre-stored registration set is detected. The registration set includes a face image of at least one registration user. Further, the target registration user is confirmed as signed in successfully if the target registration user exists in the registration set.
Abstract:
The embodiment of the present invention provides a human face recognition method and recognition system. The method includes that: a human face recognition request is acquired, and a statement is randomly generated according to the human face recognition request; audio data and video data returned by a user in response to the statement are acquired; corresponding voice information is acquired according to the audio data; corresponding lip movement information is acquired according to the video data; and when the lip movement information and the voice information satisfy a preset rule, the human face recognition request is permitted. By performing fit goodness matching between the lip movement information and voice information in a video for dynamic human face recognition, an attack by human face recognition with a real photo may be effectively avoided, and higher security is achieved.