FABRICATION OF SEMICONDUCTOR STACKS WITH RUTHENIUM-BASED MATERIALS
    31.
    发明申请
    FABRICATION OF SEMICONDUCTOR STACKS WITH RUTHENIUM-BASED MATERIALS 有权
    用基于金属的材料制造半导体堆叠

    公开(公告)号:US20120171839A1

    公开(公告)日:2012-07-05

    申请号:US13395071

    申请日:2009-09-18

    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device such as a capacitor and DRAM cell. In particular, a bottom electrode upon which a dielectric layer is to be grown may have a ruthenium-based surface. Lattice matching of the ruthenium surface with the dielectric layer (e.g., titanium oxide, strontium titanate or barium strontium titanate) helps promote the growth of rutile-phase titanium oxide, thereby leading to higher dielectric constant and lower effective oxide thickness. The ruthenium-based material also provides a high work function material, leading to lower leakage. To mitigate nucleation delay associated with the use of ruthenium, an adherence or glue layer based in titanium may be employed. A pretreatment process may be further employed so as to increase effective capacitor plate area, and thus promote even further improvements in dielectric constant and effective oxide thickness (“EOT”).

    Abstract translation: 本公开提供了制造半导体堆叠和相关设备(诸如电容器和DRAM单元)的方法。 特别地,要生长电介质层的底部电极可以具有钌基表面。 钌表面与电介质层的晶格匹配(例如氧化钛,钛酸锶钛酸钡或钛酸钡锶)​​有助于促进金红石相二氧化钛的生长,从而导致更高的介电常数和更低的有效氧化物厚度。 钌基材料还提供高功函数材料,导致较低的泄漏。 为了减轻与使用钌有关的成核延迟,可以采用基于钛的粘附层或胶层。 可以进一步采用预处理工艺,以增加有效的电容器板面积,从而进一步提高介电常数和有效的氧化物厚度(“EOT”)。

    Titanium-based high-K dielectric films
    33.
    发明授权
    Titanium-based high-K dielectric films 有权
    钛基高K电介质薄膜

    公开(公告)号:US07968452B2

    公开(公告)日:2011-06-28

    申请号:US12494702

    申请日:2009-06-30

    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle. The process provides high deposition rates, and the resulting MIM structure has substantially no x-ray diffraction peaks associated with anatase-phase titanium oxide.

    Abstract translation: 本公开内容提供(a)制造基于氧化钛的氧化物层(例如电介质层)的方法,以抑制锐钛矿相氧化钛的形成和(b)相关的器件和结构。 使用底部电极(或其他基底)的臭氧预处理随后进行ALD工艺来形成金属 - 绝缘体 - 金属(“MIM”)堆叠,以形成根植于含酰胺前体的TiO 2电介质。 在ALD工艺之后,氧化退火工艺的应用热度足以愈合TiO2电介质中的缺陷,并降低TiO2和电极之间的界面态; 选择退火温度以使其不那么热,以致破坏BEL表面粗糙度。 进一步的工艺变型可以包括在ALD工艺期间掺杂氧化钛,基座加热至275-300摄氏度,对于BEL使用铂或钌,对于每个ALD工艺循环使用多个试剂脉冲的臭氧。 该方法提供高沉积速率,并且所得MIM结构基本上没有与锐钛矿相氧化钛相关的x射线衍射峰。

    CVD flowable gap fill
    34.
    发明授权
    CVD flowable gap fill 有权
    CVD可流动缝隙填充

    公开(公告)号:US07915139B1

    公开(公告)日:2011-03-29

    申请号:US12508461

    申请日:2009-07-23

    Abstract: The present invention meets these needs by providing improved methods of filling gaps. In certain embodiments, the methods involve placing a substrate into a reaction chamber and introducing a vapor phase silicon-containing compound and oxidant into the chamber. Reactor conditions are controlled so that the silicon-containing compound and the oxidant are made to react and condense onto the substrate. The chemical reaction causes the formation of a flowable film, in some instances containing Si—OH, Si—H and Si—O bonds. The flowable film fills gaps on the substrates. The flowable film is then converted into a silicon oxide film, for example by plasma or thermal annealing. The methods of this invention may be used to fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.

    Abstract translation: 本发明通过提供填充间隙的改进方法来满足这些需要。 在某些实施方案中,所述方法包括将基材置于反应室中并将气相含硅化合物和氧化剂引入所述​​室中。 控制反应器条件使得含硅化合物和氧化剂反应并冷凝到基底上。 化学反应导致形成可流动的膜,在某些情况下,含有Si-OH,Si-H和Si-O键。 可流动膜填充基板上的间隙。 然后将可流动膜转化成氧化硅膜,例如通过等离子体或热退火。 本发明的方法可用于填充高纵横比间隙,包括具有3:1至10:1的纵横比的间隙。

    Flowable film dielectric gap fill process
    37.
    发明授权
    Flowable film dielectric gap fill process 有权
    可流动薄膜电介质间隙填充工艺

    公开(公告)号:US07524735B1

    公开(公告)日:2009-04-28

    申请号:US11447594

    申请日:2006-06-05

    Abstract: Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.

    Abstract translation: 本发明的方法涉及通过在间隙中形成可流动的膜来填充具有固体电介质材料的衬底上的间隙。 可流动膜提供一致的,无空隙的间隙填充。 然后将膜转化成固体电介质材料。 以这种方式,用固体电介质材料填充衬底上的间隙。 根据各种实施方案,所述方法包括使电介质前体与氧化剂反应以形成电介质材料。 在某些实施方案中,电介质前体冷凝并随后与氧化剂反应以形成电介质材料。 在某些实施方案中,气相反应物反应形成冷凝的可流动的膜。

    CVD flowable gap fill
    40.
    发明授权

    公开(公告)号:US08580697B1

    公开(公告)日:2013-11-12

    申请号:US13031077

    申请日:2011-02-18

    Abstract: The present invention meets these needs by providing improved methods of filling gaps. In certain embodiments, the methods involve placing a substrate into a reaction chamber and introducing a vapor phase silicon-containing compound and oxidant into the chamber. Reactor conditions are controlled so that the silicon-containing compound and the oxidant are made to react and condense onto the substrate. The chemical reaction causes the formation of a flowable film, in some instances containing Si—OH, Si—H and Si—O bonds. The flowable film fills gaps on the substrates. The flowable film is then converted into a silicon oxide film, for example by plasma or thermal annealing. The methods of this invention may be used to fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.

Patent Agency Ranking