Abstract:
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
Abstract:
A flexible display device and method of manufacturing the same are disclosed. In one aspect, the flexible display device includes a flexible substrate including a first surface and a second surface opposite to the first surface and a display unit over the first surface of the flexible substrate. The flexible display device also includes a first barrier layer over the second surface of the flexible substrate and a first material layer between the first barrier layer and the flexible substrate, wherein the first material layer includes metal. The flexible display device can be more easily manufactured and resistant to external moisture permeation.
Abstract:
A flexible display and a method of manufacturing the same are disclosed. In one aspect, the method includes forming a sacrificial layer on a support substrate, wherein the sacrificial layer includes a plurality of patterns continuously formed thereon and a plurality of grooves formed between the patterns. The method also includes forming a display unit on the sacrificial layer, dissolving and removing the sacrificial layer with water and separating the display unit from the support substrate.
Abstract:
Provided is a method of manufacturing a flexible display apparatus, the method including forming a sacrificial layer on a support substrate; forming a first material layer having a higher hydrogen concentration than the sacrificial layer on the sacrificial layer; forming a second material layer, preventing hydrogen diffusion from the first material layer to a flexible substrate, on the first material layer; forming the flexible substrate on the second material layer; forming a display layer on the flexible substrate; and irradiating a laser onto the support substrate to delaminate the sacrificial layer from the first material layer.
Abstract:
In a flexible substrate for roll-to-roll processing having improved thermal, mechanical, and chemical stabilities, a method of manufacturing the same, and an organic light emitting display apparatus including the same, the flexible substrate for roll-to-roll processing includes a base film formed of an organic material and an inorganic mesh pattern formed of inorganic material. The base film includes a first surface and a second surface opposite to the first surface, the first surface comprising first trenches extending in a first direction and second trenches extending in a second direction. The inorganic mesh pattern buries the first trenches and the second trenches.