Abstract:
A dual-band refractive inverse telephoto lens system configured for mid-wave infrared (MWIR) and long-wave infrared (LWIR) operation. In certain examples the dual-band refractive inverse telephoto lens system includes first, second, third, and fourth lenses, each constructed from a material that is optically transparent in the mid-wave infrared and long-wave infrared spectral bands, and has an external pupil coincident with an aperture stop of the refractive inverse telephoto lens system, the aperture stop being located between the first, second, third, and fourth lenses and the infrared imaging detector to allow for 100% cold shielding.
Abstract:
Aspects and embodiments are generally directed to modular imaging spectrometer assemblies and methods of operation thereof. In one example, a modular imaging spectrometer assembly includes foreoptics to receive electromagnetic radiation and produce a real exit pupil, the foreoptics having a first f-number, a first imaging spectrometer to receive and disperse the electromagnetic radiation into a first plurality of spectral bands at a first image plane, the first imaging spectrometer having a second f-number independent of the first f-number, a second imaging spectrometer separated from the first imaging spectrometer, the second imaging spectrometer to receive and disperse the electromagnetic radiation into a second plurality of spectral bands, the second imaging spectrometer having a third f-number independent of the first f-number, and at least one slit aperture positioned to receive the electromagnetic radiation from the real exit pupil and direct the electromagnetic radiation to the first and second imaging spectrometers.
Abstract:
An all-reflective coronagraph optical system for continuously imaging a wide field of view. The optical system can comprise a fore-optics assembly comprising a plurality of mirrors that reflect light rays, about a wide field of view centered around the Sun, to an aft-optics assembly that reflects the light rays to an image sensor. A fold mirror, having an aperture, is optically supported between the fore-optics assembly and the aft-optics assembly. The aperture defines an angular subtense (e.g., 1.0 degree) sized larger than the angular subtense of the Sun. The aperture facilitates passage of a direct solar image and a solar thermal load. A thermal control subsystem comprises a shroud radiatively coupled to each fore-optics mirror and the fold mirror. A cold radiator is thermally coupled to each shroud. Heaters adjacent fore optics mirrors and the fold mirror control temperature to provide a steady state optical system to minimize wavefront error.
Abstract:
A multi-channel double-pass imaging spectrometer based on a reimaging or relayed all-reflective optical form, such as a four-mirror anastigmat (4MA) or five-mirror anastigmat (5MA). In one example, such a spectrometer includes a slit through which incident electromagnetic radiation enters the spectrometer, an imaging detector positioned at an image plane of the spectrometer co-located with the slit, and double-pass all-reflective reimaging optics configured to receive the electromagnetic radiation from the slit and to output a collimated beam of the electromagnetic radiation, and further configured to produce a reimaged pupil positioned between the double-pass all-reflective reimaging optics and the image plane. The spectrometer further includes at least one dispersive element configured to spectrally disperse the infrared electromagnetic radiation in each channel and being oriented to direct the dispersed output through the double-pass all-reflective reimaging optics to the image plane.
Abstract:
One embodiment disclosed is a spectrometry system for collecting spatially and temporally co-registered hyperspectral data covering multiple spectral bands. The spectrometry system includes a single entrance slit for receiving light and a plurality of disperser elements operating over a plurality of distinct spectral bands to disperse the received light into constituent spectral channels. The system also includes a plurality of collimating and imaging optic elements that receive and re-image the dispersed light. The system also includes at least two focal plane arrays affixed in a common plane and configured to receive the re-imaged dispersed light, each of the at least two focal plane arrays being dedicated to sensing a distinct spectral band of the dispersed light.
Abstract:
An imaging platform minimizes image distortion when there is relative motion of the imaging platform with respect to the scene being imaged where the imaging platform may be particularly susceptible to distortion when it is configured with a wide field of view or high angular rate of movement, or when performing long-stares at a given scene (e.g., for nighttime and low-light imaging.) Distortion correction may be performed by predicting distortion due to the relative motion of the imaging platform, determining optical transformations to prevent the distortion, dynamically adjusting the optics of the imaging platform during exposure, and performing digital image correction.
Abstract:
A multi-band refractive optical imaging system. In one example, the system includes a plurality of lenses configured to receive and propagate electromagnetic radiation in at least the visible spectral band and the longwave infrared (LWIR) spectral band, the plurality of lenses including a first group of lenses of a first crown material, at least one lens of a first flint material, and at least one lens of a second material different than the first crown material and the first flint material. The plurality of lenses includes at least one crown-flint pair configured as an achromat to provide color correction in the visible and/or LWIR spectral bands. The system also includes a first beamsplitter configured to separate the electromagnetic radiation into the visible spectral band and the LWIR spectral band, and a rear external aperture stop positioned between the plurality of lenses and the first beamsplitter.
Abstract:
An optical sensor comprises foreoptics configured to receive an image signal, an image optic operable to focus the image signal, at least one focal plane array (FPA) configured to detect the image signal, and a jitter stabilization system. The jitter stabilization system can comprise a transmitter configured to transmit a jitter source signal to the foreoptics and a position sensor configured to receive a jitter return signal. The position sensor can be positioned at a shared focus with the at least one FPA. The optical sensor further comprises a diffraction grating operable to reflect and diffract at least a portion of the jitter source signal. The jitter return signal received at the position sensor comprises at least a portion of the reflected and diffracted jitter source signal.
Abstract:
A LADAR system includes a transmitter configured to emit a directed optical signal. The LADAR system includes a shared optical aperture through which the directed optical signal is emitted. The shared optical aperture includes a first pupil plane. The shared optical aperture receives a return optical signal that is based on the directed optical signal. The system includes a mirror with a hole through which the directed optical signal passes. The mirror also reflects the return optical signal towards an imager. The imager receives the return optical signal and generates an image. The image is based on a portion of the return optical signal. The system also includes a partial aperture obscuration at a second pupil plane. The partial aperture obscuration may block a portion of internal backscatter in the return optical signal. The system also includes a focal plane to record the image.
Abstract:
An optical sensor comprises foreoptics configured to receive an image signal, an image optic operable to focus the image signal, at least one focal plane array (FPA) configured to detect the image signal, and a jitter stabilization system. The jitter stabilization system can comprise a transmitter configured to transmit a jitter source signal to the foreoptics and a position sensor configured to receive a jitter return signal. The position sensor can be positioned at a shared focus with the at least one FPA. The optical sensor further comprises a diffraction grating operable to reflect and diffract at least a portion of the jitter source signal. The jitter return signal received at the position sensor comprises at least a portion of the reflected and diffracted jitter source signal.