Abstract:
Apparatus and methods are disclosed for establishing a call utilizing a traffic channel corresponding to a first communication protocol; transmitting a data rate control (DRC) channel comprising a null cover for no greater than 16 time slots; tuning away from the call to receive signaling corresponding to a second communication protocol; and following the receiving of the signaling corresponding to the second communication protocol, tuning back to the traffic channel to resume the call.
Abstract:
Various embodiments may provide systems and methods for supporting wireless device paging in a network, such as a Fifth Generation (5G) New Radio (NR) (5GNR) network, etc. In various embodiments, a wireless device may determine whether to decode a Physical Downlink Shared Channel (PDSCH) paging message based at least in part on an indication in a received downlink control information (DCI) message.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a first set of synchronization signal blocks (SSBs) for a first subscription of the UE and a second set of SSBs for a second subscription of the UE; select a first SSB, from the first set of SSBs, for communications of the first subscription; identify a third set of SSBs by modifying the second set of SSBs to remove one or more SSBs from the second set of SSBs, at least one SSB of the one or more SSBs overlapping in time with the first SSB; select a second SSB from the third set of SSBs; and monitor the second SSB for paging messages of the second subscription. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Capability exchange enhancements include filtering and/or indexing. In some aspects, a user equipment (UE) determines UE capabilities to be reported to a network based on one or more of: one or more enquiries from the network, received system information, a home operator policy, configuration associated with public land mobile network (PLMN) information of one or more networks, a user preference, or a service type. In other aspects, a UE may report a subset of UE capabilities for features used for the connection establishment. Following connection establishment, the UE may use an identifier to communicate a more complete set of modes of operation that the UE is currently capable of performing. Base stations of the network may share the reported subset so that the UE may avoid transmitting the subset to a target base station.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine location information regarding the UE; and activate a receive beam of the UE in at least one symbol, associated with at least one transmit beam of at least one base station, based at least in part on the location information, wherein the UE is configured to activate the receive beam based at least in part on mapping information, at least partially determined by the UE, that indicates that the receive beam is associated with the location information. Numerous other aspects are provided.
Abstract:
Techniques are provided to initiate signal transmissions for possible opportunistic reception by a mobile device, and/or to initiate opportunistic reception of signal transmissions for use in mobile device position location estimation. For example, a mobile device may use assistance data to identify a first signal to be transmitted over a first frequency band and a second signal to be transmitted over a second frequency band during a specific period of time. At least a portion of the second frequency band may be outside of the first frequency band. The mobile device subsequently attempts to opportunistically receive at least the first signal and the second signal via a receiver tuned to a reception frequency band that encompasses at least the first frequency band and the second frequency band. The mobile device may then process the opportunistically received signals to obtain measurements corresponding to at least the first and second signals.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing a vehicle charging station having a docking terminal. In various embodiments, a priority of a first autonomous vehicle and a second autonomous vehicle may be determined for using the docking terminal when a docking request is received from the second autonomous vehicle while the first autonomous vehicle occupies the docking terminal. In some embodiments, the priorities of the first and second autonomous vehicles may be based on an available power level of each of the first and second autonomous vehicles. The first autonomous vehicle may be instructed to undock from the docking terminal in response to determining that the second autonomous vehicle has a higher priority.
Abstract:
One aspect of the present application provides a Category M apparatus that communicates over a communication network. The apparatus comprises a processor and an interface. The processor is configured to generate a message requesting registration of the apparatus with a core network, the message generated to include at least one header indicating a power saving mode capability of the apparatus. The processor is further configured to schedule sleep periods and wakeup times for the apparatus. The interface is configured to transmit the message to the core network. The interface is further configured to receive a response, from the core network, including one or more parameters and one or more timers established by the core network based at least in part on the power saving mode capability of the apparatus.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for call continuity following radio link failure (RLF) through re-establishment of a voice call using a same or different radio access technology (RAT) before the call is dropped. Upon detection of RLF on a connection supporting a voice call, a UE may initiate a drop call timer and scan for available connections. The voice call may be attempted to be re-established if a connection is available on using a RAT of an existing connection. The voice call in such cases may continue without the call being dropped. Upon expiration of the drop call timer, the UE may attempt to establish a connection using a RAT identified during the duration of the drop call timer.