Abstract:
Methods, systems, and devices for wireless communications are described. A network may be configured to provide a beam measurement configuration to a UE that indicates durations for monitoring transmission beams, and tuning a component of the UE between the monitoring. The durations may include a first portion that a UE may use for a tuning operation and a second portion that the UE may use to monitor for or measure a respective reference signal. In various examples, the indicated durations may include a third portion that the UE may use for another tuning operation, or the durations may overlap with one another during an overlap duration that the UE may use for another tuning operation. During the indicated durations, the network may refrain from transmitting other downlink data or control information for the UE, and the UE may refrain from monitoring for such other downlink data or control information.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive system information associated with a set of neighboring cells included in a non-terrestrial network (NTN). The UE may be connected to or camped in a current cell included in the NTN. The current cell may be associated with a current platform. The UE may monitor a neighboring cell, of the set of neighboring cells, based at least in part on the system information. Numerous other aspects are provided.
Abstract:
Various aspects relate to adjusting communication timing in response to a switch from one feeder link to another feeder link in a non-terrestrial network. For example, when a satellite moves out of the coverage area of a first ground network entity (or if the first ground network entity is turned off), the satellite switches to a second ground network entity. The resulting switch from a first feeder link for the first ground network entity to a second feeder link for the second ground network entity may cause a timing glitch that adversely affects the UEs under the coverage of the satellite. The disclosure relates in some aspects to sending an indication of the switch and/or a common timing adjust command to all of the UEs affected by the feeder link switch.
Abstract:
A non-terrestrial network is provided that includes a satellite that transmits an orbital parameter message to a user equipment. The user equipment processes the orbital parameter message to determine a current range from the user equipment to the satellite based upon the received orbital parameter message, a timing offset and a frequency offset for an uplink transmission to the satellite.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for wireless communication via a non-terrestrial network (NTN). In one aspect, a method for wireless communication includes initiating, by a user equipment (UE), a registration process with a network entity of an NTN to access the NTN. The method further includes transmitting, by the UE to the network entity, UE capability information of the UE. Other aspects and features are also claimed and described.
Abstract:
Methods and apparatus for wireless communication include monitoring, by a user equipment, a signal quality value from at least one of a serving cell or a target cell. The methods and apparatus further include determining, at an expiration of an internal time to trigger (TTT) less than a network-configured TTT, that at least one of the signal quality value from the serving cell is below a serving cell threshold value, or the signal quality value from the target cell is above the signal quality of the serving cell by a comparative threshold value. Moreover, the methods and apparatus include triggering generation of a measurement report based on the determination.
Abstract:
Apparatus and methods of improving call performance by enabling/continuing uplink transmissions during poor downlink radio conditions. The apparatus and methods further include monitoring, by a user equipment (UE), downlink (DL) signal conditions associated with a serving Node B. Moreover, the apparatus and methods include triggering an out-of-sync state upon a determination that the DL signal conditions have degraded beyond a DL signal quality threshold. Additionally, the apparatus and methods include delaying turning off of a power amplifier (PA) associated with transmission of uplink (UL) messages for a call performance improvement threshold time duration.
Abstract:
Certain aspects of the present disclosure provide techniques for supporting multiple types of random access occasions. A method that may be performed by a user equipment (UE) includes receiving, from a base station (BS), an indication of at least two types of random access occasions (ROs) including a first RO type and a second RO type for communicating in a first coverage area of the BS as part of a random access process for the UE to establish a connection with the BS in the first coverage area. The method further includes transmitting, to the BS, a preamble on an RO of one of the first RO type or the second RO type, wherein a preamble format of the preamble is based on whether the RO is of the first RO type or the second RO type.
Abstract:
Disclosed are techniques for positioning. A receiver receives complementary timing information associated with the positioning reference signals (PRS) of a repetition of a PRS sequence. The complementary timing information distinguishes a repetition of a PRS sequence from remaining repetitions of the PRS sequence. Based on the complementary timing information associated with different PRS from different non-terrestrial vehicles indicating that the PRS were transmitted during the same radio frame, the receiver can determine an observed time difference of arrival (OTDOA) between the PRS received from the respective non-terrestrial vehicles.
Abstract:
Methods, systems, and devices for wireless communication are described. A communication device (e.g., a vehicle) in wireless communications system (e.g., a cellular-vehicle-to-everything (V2X) system) may support adaptive radar transmissions based on information received in a public safety message. The communication device may use information included in the public safety message to adapt radar transmissions to enable timely detection of vulnerable road users (VRUs). In some examples, based on a location and a velocity estimate provided in the public safety message, the communication device may adjust the radar transmissions to experience a trade-off between range and velocity estimation performance. Additionally or alternatively, based on positional accuracy estimates provided in the public safety message, the communication device may adjust the radar transmissions to improve beamforming. By adapting the radar transmissions, the communication device may experience low latency and high reliability for VRU collision warnings in the C-V2X system.