Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
A range between a first wireless device and a second wireless device is estimated using a first mechanism based on messages transmitted over a first communication channel. The first communication channel is associated with a first radio access technology capability of the wireless devices. One or more metrics indicative of an accuracy of the range estimates provided by the first mechanism are obtained. A second mechanism to estimate a range between the first wireless device and the second wireless device may be implemented in favor of the first mechanism when the metric fails to satisfy a criterion. The second mechanism is based on unicast messages transmitted over a second communication channel. The second communication channel is associated with a second radio access technology capability of the wireless devices and may be the same as, or different from, the first communication channel.
Abstract:
Methods, systems, and devices are described for using location information to determine whether to use at least a portion of a dedicated short range communications (DSRC) spectrum. Current location information of a multi-mode device is determined. The multi-mode device is operating outside of the DSRC spectrum. The current location information is used to determine whether the multi-mode device is located outside of geographical region attributed to DSRC transmissions. Upon determining that the multi-mode device is located outside of the geographical region, at least a portion of the DSRC spectrum is used for transmissions by the multi-mode device.
Abstract:
Methods of determining a position of a mobile device in a vehicle are disclosed. An angular velocity of the vehicle, at a turning time while the vehicle is turning, may be determined according to input from an inertial sensor system of a first mobile device. A longitudinal acceleration, at the turning time, of linear acceleration along a longitudinal axis of the vehicle, may be determined according to input from the inertial sensor system. A lateral acceleration, at the turning time, of linear acceleration along a lateral axis perpendicular to the longitudinal axis, also may be determined according to input from the inertial sensor system. A first distance from the first mobile device to a rear axle of the vehicle may be calculated, based at least in part on the angular velocity, the longitudinal acceleration and the lateral acceleration.
Abstract:
A station (STA) receives a schedule from a reference device in a wireless network. The schedule provides a measurement time for each of one or more wireless channels. The STA tunes to a first channel of the one or more wireless channels in accordance with the schedule. While tuned to the first channel in accordance with the schedule, the STA receives a first message from a first access point (AP). The first message, which includes a time-of-departure timestamp from the reference device, is time-stamped with a time-of-arrival timestamp. The STA receives an indication of a time at which the reference device received the first message from the first AP. The STA determines its position based in part on the time-of-departure timestamp, the time-of-arrival timestamp, and the time at which the reference device received the first message.
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a first BS. The apparatus determines a first channel between a second BS and a first UE served by a third BS, determines a second channel between the first base station and the first UE, and determines a first direction vector to be used by the second base station for sending a data transmission. The apparatus transmits a set of resource blocks to a second UE served by the first base station with a second direction vector determined based on the first channel, the second channel, and the first direction vector to be used by the second base station.
Abstract:
A UE receives information indicating a receive direction vector for a serving BS and a set of receive direction vectors for at least one interfering BS. The UE determines a channel between the UE and the serving BS and a set of channels between the UE and each of the at least one interfering BS. The UE determines a transmit direction vector to apply to modulated symbols for mapping to a set of resource blocks for an uplink transmission based on the channel, the set of channels, the receive direction vector, and the set of receive direction vectors. The UE determines an interference caused to the at least one interfering BS by the uplink transmission based on the transmit direction vector, the set of channels, and the set of receive direction vectors. The UE transmits information indicating the interference to the serving BS.
Abstract:
Methods and apparatus for determining a portion of a channel, e.g., a peer discovery channel, to use in a communications network, e.g., an ad hoc peer to peer network, are described. In the communication network, the channel includes a recurring set of time/frequency resources. A device monitors the congestion level and decides to use a whole channel or a fraction of a channel (e.g., ½. ¼) as a function of the congestion level. The device may change the fraction of the channel it occupies as the congestion level changes. The device broadcasts control information indicating the fraction of the channel it occupies. The device may be a mobile wireless terminal.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a first BS. The apparatus determines a first channel between a second BS and a first UE served by a third BS, determines a second channel between the first base station and the first UE, and determines a first direction vector to be used by the second base station for sending a data transmission. The apparatus transmits a set of resource blocks to a second UE served by the first base station with a second direction vector determined based on the first channel, the second channel, and the first direction vector to be used by the second base station.