Abstract:
Techniques are provided for combining different types of reference signals. A wireless communications network may be configured to allow a user equipment (UE) to combine multiple demodulation reference signals (DM-RSs) to support demodulation of a physical downlink shared channel (PDSCH), and/or other downlink transmissions, transmitted from a base station to the UE. The base station may provide explicit signaling that reference signals transmitted in two or more transmission time intervals may be combined, or a determination that reference signals transmitted in two or more transmission time intervals may be combined may be made implicitly based on system configuration and previous transmissions. Based on the explicit signaling and/or implicit determination, a UE may combine reference signals included in each of two or more reference signals for use in demodulation of downlink transmissions.
Abstract:
Techniques for sending control information relating to multiple downlink carriers and data on a single uplink carrier are described. A user equipment (UE) may be scheduled to transmit on a designated uplink carrier. The UE can multiplex control information for multiple downlink carriers with data for transmission on the uplink carrier in a same subframe. Multiplexing may be performed according to a type of the control information and/or an ordering, priority, or association of the downlink carriers. The UE can selectively encode the control information separately for each downlink carrier and/or jointly across downlink carriers. The control information may be mapped to a single layer or multiple layers of a data channel. The UE may send the multiplexed control information and data on the data channel in the subframe while maintaining a single-carrier waveform.
Abstract:
Methods and apparatus for selecting samples for secondary synchronization signal (SSS) detection are described. Several alternatives are provided for efficient cell identifier detection. In a first alternative, multiple bursts of a signal received from a cell are sampled with non-uniform spacing between sampling intervals to determine a sequence for cell identification. In a second alternative, samples of a first and a second signal received from a stronger cell are cancelled, and a sequence for detecting a weaker cell is determined by reducing effects of the samples of a third signal received from the weaker cell which do not overlap with the primary synchronization signal (PSS) or SSS of the stronger cell. In a third alternative, a sequence for detecting a weaker cell is determined by reducing effects of any sampled bursts that correspond to a high transmission power portion of a signal from a stronger cell.
Abstract:
A system and method for facilitating resource management in OFDM systems is provided. The system permits different and flexible resource cell metric operations levels (e.g. uplink load management, admission control, congestion control, signal handoff control) for different sub-bands. For the uplink load management, there are multiple distinct load operation points (e.g. IoT, RoT) per sub-band group instead of the same operation level across the entire available band. The sub-band groups encompass the entire band. The facilitation system also comprises a variety of transmitting protocols, command increment variable stepsize methods and robust command response methods. The system thus provides more flexible reverse link resource management and more efficient utilization of the bandwidth.
Abstract:
Methods, systems, and devices are described for a UE to determine a DRX wakeup rule in an eICIC environment. A UE may identify a measurement period associated with reduced interference from one or more cells in a wireless communications network. The cells may be a serving cell or a neighbor cell. The measurement period may be identified based on eICIC data available to the UE. The eICIC data may be sent to the UE by a serving cell and/or determined by the UE. The UE may power up a wireless modem to perform a warm-up measurement of the serving cell during the identified measurement period prior to transitioning the UE to a DRX on state.
Abstract:
A method for communicating in an advanced long term evolution (LTE-A) network using common reference signal (CRS) resources associated with different interference levels due to resource partitioning is disclosed. Signals are received from an eNodeB indicating a subset of CRS resources for radio link monitoring (RLM) and/or reference signal received power (RSRP) measuring. The subset of CRS resources includes the CRS resources expected to have lower interference from the interfering eNodeBs. RLM and/or RSRP measurements are performed based on the indicated subset.
Abstract:
Estimation of timing errors is disclosed that uses user equipment reference signals (UERSs). A UE models each channel in a user equipment reference signal (UERS) as a channel on an adjacent UERS tone multiplied by a phase ramping term. This phase ramping term is determined using an estimator on the modeled channels. The UE then determines the equivalent timing error by mapping the phase ramping terms into the estimated timing errors in the time domain. In coordinated multipoint (CoMP) systems, the UERS-based timing error may be used to identify an aligned common reference signal (CRS) associated with the network entity transmitting the data. With this determination, the UE may estimate a CRS-based timing error and either substitute the CRS-based timing error for the UERS-based timing error or calculate a further average timing error based on both the CRS-based and UERS-based timing errors.