Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a set of time intervals is obtained from a received radio frequency signal. A power profile is determined for a frequency spectrum segment in each time interval. A first list is used to identify frequency spectrum segments that exhibit a power or energy profile over a range of frequencies associated with a downlink channel bandwidth, and a second list is used to identify frequency spectrum segments that have a total or average energy greater than a threshold energy relative to a noise floor. An absolute radio frequency channel number (ARFCN) of a wireless communication system is determined based on the time intervals identified in the first and second lists.
Abstract:
Methods, systems, and devices are described for a UE to determine a DRX wakeup rule in an eICIC environment. A UE may identify a measurement period associated with reduced interference from one or more cells in a wireless communications network. The cells may be a serving cell or a neighbor cell. The measurement period may be identified based on eICIC data available to the UE. The eICIC data may be sent to the UE by a serving cell and/or determined by the UE. The UE may power up a wireless modem to perform a warm-up measurement of the serving cell during the identified measurement period prior to transitioning the UE to a DRX on state.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a set of time intervals is obtained from a received radio frequency signal. A power profile is determined for a frequency spectrum segment in each time interval. A first list is used to identify frequency spectrum segments that exhibit a power or energy profile over a range of frequencies associated with a downlink channel bandwidth, and a second list is used to identify frequency spectrum segments that have a total or average energy greater than a threshold energy relative to a noise floor. An absolute radio frequency channel number (ARFCN) of a wireless communication system is determined based on the time intervals identified in the first and second lists.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines whether a channel quality indicator (CQI) is to be reported during any one of x subframes immediately after a start of a next on-duration, an on-duration being a duration over which a downlink control channel is monitored every discontinuous reception (DRX) cycle, and x being a number of subframes used to generate a CQI report, schedules a wake-up time for reporting the CQI when the CQI is to be reported during any one of the x subframes immediately after the start of the next on-duration, and reports the CQI based on a reference subframe. The CQI may be based on a last subframe of a previous DRX cycle active time, and reported at a first subframe of the next on-duration.
Abstract:
Methods, systems, and devices are described for a UE to determine a DRX wakeup rule in an eICIC environment. A UE may identify a measurement period associated with reduced interference from one or more cells in a wireless communications network. The cells may be a serving cell or a neighbor cell. The measurement period may be identified based on eICIC data available to the UE. The eICIC data may be sent to the UE by a serving cell and/or determined by the UE. The UE may power up a wireless modem to perform a warm-up measurement of the serving cell during the identified measurement period prior to transitioning the UE to a DRX on state.