Abstract:
Methods, apparatuses, and computer-readable mediums for wireless communication are disclosed by the present disclosure. In an example, a host device may determine a pool of preconfigured resources for discovery. The preconfigured resources are designated for one or more of: a discovery preamble, a query signal, a discovery message, and a random access preamble. The host device may transmit the discovery preamble on one or more resources designated for the discovery preamble. A client device may receive the discovery preamble and determine that the client device is interested in receiving information regarding the host device. The client device may transmit a query signal if interested. The host device may determine whether the query signal is received on a resource designated for the query signal in response to the discovery preamble. The host device may transmit a discovery message in response to receiving the query signal.
Abstract:
Certain aspects of the present disclosure provide techniques for hierarchical communication for device-to-device (D2D) communications. In certain aspects, a method generally includes determining user equipment (UE) data comprising at least one of one or more parameters about the UE, one or more parameters about objects near the UE, or raw sensor data. The method further includes determining a first level for transmitting a first portion of the UE data based on content of the first portion of the UE data. The method further includes determining a first modulation coding scheme associated with the first level based on a mapping of a plurality of levels to a plurality of modulation coding schemes. The method further includes encoding the first portion of the UE data using the first modulation coding scheme and transmitting the first portion of the UE data from the UE to at least one second UE directly.
Abstract:
Various aspects described herein relate to techniques for connection setup procedures in a wireless communication system (e.g., a vehicle-to-everything (V2X) communication system in millimeter wave). In an aspect, the method includes identifying information for V2X communications, and initiating a random access procedure based on the identified information. The method further includes identifying one or more random access channel (RACH) resources based on the information, identifying one or more RACH response resources based on the one or more RACH resources, and performing directional communications using at least the one or more RACH resources or the one or more RACH response resources.
Abstract:
A method for ranging includes randomly selecting a symbol in each of at least two successive sub-cycles of a ranging cycle, transmitting symbol IDs corresponding to the randomly selected symbols and a sequence ID, and transmitting a ranging signal with the sequence ID on each of the randomly selected symbols.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus is configured to transmit a first SA information in a first subframe. The apparatus is further configured to transmit a first data in the first subframe. The apparatus is configured to transmit a second SA information in a second subframe. The apparatus is also configured to transmit a second data in the second subframe. The first SA information includes information on the first data and the second data. The second SA information includes information on the second data.
Abstract:
The present disclosure enables the assignment of multiple semi-persistent resource assignments at the same time for use in V2V communications. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE (e.g., a vehicle). The UE may determine at least one resource pattern required for V2V communications. The UE may also send assistance information for the at least one resource pattern to a base station. Further, the UE may receive, from the base station, a response associated with the at least one resource pattern. In an aspect, the response may include an index of approved resource patterns. Further still, the UE may receive, from the base station, an activation grant for a resource assignment for the at least one resource pattern. In an aspect, activation grant may include the index of approved resource patterns being activated.
Abstract:
Disclosed are techniques for using ranging signals to determine a position of a pedestrian user equipment (P-UE). In an aspect, a UE receives a plurality of ranging signals transmitted by one or more UEs, measures one or more properties of each of the plurality of ranging signals, and calculates an estimate of the position of the P-UE based on the one or more properties of each of the plurality of ranging signals. In an aspect, the P-UE transmits a plurality of ranging signals, receives a first message and a second message from first and second vehicle UEs (V-UEs), the first and second messages including first and second estimated positions of the P-UE and associated first and second confidences, and calculates an estimate of the position of the P-UE based on the first estimated position, the first confidence, the second estimated position, the second confidence, or a combination thereof.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an eNB. The eNB informs UE(s) of a change in at least one of a first configuration for transmission of ACKs/NACKs by the UE(s) for DL transmissions received by the UE(s) or a second configuration for reception of ACKs/NACKs by the UE(s) for UL transmissions sent by the UE(s). The eNB indicates to the UE(s) one or more resources in which the UE(s) is to transmit the ACKs/NACKs for the received DL transmissions or is to receive the ACKs/NACKs for sent UL transmissions. The eNB indicates to the UE(s) a subset of the DL transmissions to the UE(s) for which the UE(s) is to transmit the ACKs/NACKs or a subset of the UL transmissions by the UE(s) for which the UE(s) is to receive the ACKs/NACKs.
Abstract:
Methods, apparatus, and computer-readable mediums for wireless communication are provided. One apparatus is configured to receive at least one SA from at least one UE. The apparatus is further configured to determine an energy associated with each at least one SA. The apparatus is also configured to rank data transmission time-frequency resources based on the determined energy associated with said each received at least one SA. Each at least one SA are associated with a different subset of the data transmission time-frequency resources. The apparatus is further configured to select a set of data transmission time-frequency resources based on the ranked data transmission time-frequency resources and to send a data transmission on the selected set of data transmission time-frequency resources. Another apparatus is configured to partitioning time-frequency resources into different resource groups, to divide UEs into UE groups based on location, and map the UE groups to the resource groups.
Abstract:
A method for position determination based on carrier-phase measurements is disclosed. The method comprises receiving one or more downlink signals transmitted from a base station (BS) during a downlink period, wherein the downlink signals are modulated using a downlink carrier wave, measuring, during the downlink period, a first carrier phase associated with the downlink carrier wave, estimating, during an uplink period subsequent to the downlink period, an integer ambiguity (IA) change, and measuring, during a later downlink period subsequent to the uplink period, a second carrier phase based on the resolved first carrier phase and the estimated IA change.