Abstract:
Systems and methods for resolving elevation ambiguity include acquiring, using a 1-D horizontal radar antenna array, a radar frame with range and azimuth information, and predicting a target elevation based on the frame by computing a depth map with a plurality of target depths assigned to corresponding azimuth-elevation pairs. Computing the depth map includes processing the radar frame with an encoder-decoder structured deep convolutional neural network (CNN). The CNN may be trained with a dataset including training radar frames acquired in a number of environments, and compensated ground truth depth maps associated with those environments. The compensated ground truth depth maps may be generated by subtracting a ground-depth from a corresponding ground truth depth map. The ground truth depth maps may be acquired with a 2-D range sensor, such as a LiDAR sensor, a 2-D radar sensor, and/or an IR sensor. The radar frame may also include Doppler data.
Abstract:
A method of determining a trajectory of a mobile platform includes obtaining a satellite positioning system (SPS) measurement from one or more SPS signals acquired by an SPS receiver of the mobile platform. The method also includes obtaining a visual-inertial odometry (VIO) measurement of the mobile platform from a VIO system of the mobile platform. A first position estimate of the mobile platform is determined based, at least in part, on the SPS measurement and the VIO measurement. The method then includes adjusting the first position estimate to generate a smoothed position estimate based, in part, on a smoothing parameter that controls a smoothness of the trajectory. The trajectory of the mobile platform is then determined, at least in part, using the smoothed position estimate.
Abstract:
Clock drift for range estimation between a first wireless device and a second wireless device is determine before such estimation, while acceptable communication between the first device and the second device is unavailable. While acceptable communication is unavailable, a relative clock drift Δ01 between a relative wireless device and the first device is obtained by the second device; a relative clock drift Δ20 between the second device and the relative wireless device is determined; and a relative clock drift Δ21 between the second device and the first device is estimated based on the relative clock drift Δ01 and the relative clock drift Δ20. Once acceptable communication is available, a distance between the first device and the second device is estimated based on the relative clock drift Δ21.
Abstract:
A hybrid approach for using reference frames is presented in which a series of anchor frames is used, effectively resetting a global frame upon a trigger event. With each new anchor frame, parameter values for lane boundary estimates (known as lane boundary states) can be recalculated with respect to the new anchor frame. Triggering events may a based on a length of time, distance traveled, and/or an uncertainty value.
Abstract:
Methods, systems, computer-readable media, and apparatuses for radar or LIDAR measurement are presented. Some configurations include transmitting, via a transceiver, a first beam having a first frequency characteristic; calculating a distance between the transceiver and a moving object based on information from at least one reflection of the first beam; transmitting, via the transceiver, a second beam having a second frequency characteristic that is different than the first frequency characteristic, wherein the second beam is directed such that an axis of the second beam intersects a ground plane; and calculating an ego-velocity of the transceiver based on information from at least one reflection of the second beam. Applications relating to road vehicular (e.g., automobile) use are described.
Abstract:
A method for position determination based on carrier-phase measurements is disclosed. The method comprises receiving one or more downlink signals transmitted from a base station (BS) during a downlink period, wherein the downlink signals are modulated using a downlink carrier wave, measuring, during the downlink period, a first carrier phase associated with the downlink carrier wave, estimating, during an uplink period subsequent to the downlink period, an integer ambiguity (IA) change, and measuring, during a later downlink period subsequent to the uplink period, a second carrier phase based on the resolved first carrier phase and the estimated IA change.
Abstract:
Disclosed are systems and techniques for processing range sensor data. For instance, an apparatus can be configured to obtain a plurality of measurements from one or more range sensors, and to determine, based on a sparsity constraint, a plurality of coefficients corresponding to a sparse basis expansion of a global environment model. In some aspects, the apparatus can be further configured to perform operations to determine, based on the global environment model, the plurality of coefficients, and the plurality of measurements, at least one of a linear velocity, an angular velocity, or both, corresponding to a range sensor of the one or more range sensors, wherein the global environment model is based on a sparse basis expansion.
Abstract:
Association algorithms of newly-detected lane boundaries to lane boundaries can be made more robust through the use of generated or “dummy” states. Different types of dummy states can be used to identify outlier/erroneous detections and/or new, legitimate lane boundaries. Therefore, depending on a type of dummy state a newly-detected lane boundary is associated with, the newly-detected lane boundary can be ignored, or the associated dummy state can be added to the lane boundary states of the filter.
Abstract:
Techniques provided herein are directed toward virtually extending an updated set of output positions of a mobile device determined by a VIO by combining a current set of VIO output positions with one or more previous sets of VIO output positions in such a way that ensure all outputs positions among the various combined sets of output positions are consistent. The combined sets can be used for accurate position determination of the mobile device. Moreover, the position determination further may be based on GNSS measurements.
Abstract:
The present disclosure provides methods and systems for radar detection. A radar device may obtain prior information about known targets including an azimuth angle of each known target. The radar device may generate an association aware transmit beam pattern toward at least a subset of the known targets based on the prior information. The radar device may detect targets from reflected beams of the association aware transmit beam pattern. Generating the association aware transmit beam pattern may include generating a partial ambiguity graph for the known targets, the graph including at least one edge connecting two known targets wherein a difficulty of disambiguating the two known targets is greater than a threshold. The graph also includes at least two known targets that are not connected by an edge.