Abstract:
In MIMO a wireless node's receive chain demodulation function is enhanced to include phase tracking using very high-throughput long training fields (VHT-LTFs) embedded in a frame preamble. Single stream pilot tones are added during transmission of VHT-LTFs. A receiver estimates the channel using the pilot tones in a first set of VHT-LTFs, and estimates the phase of the pilot tones using a second set of VHT-LTFs. The phase estimation receiver estimates the channel using the pilot tones in a first set of VHT-LTFs. The phase estimation is continuously applied to other received data tones throughout the VHT-LTFs of data symbols. Phase errors due to PLL mismatches and phase noise are reduced at reception, leading to better signal to noise ratio for different levels of drift and frequency offset.
Abstract:
A method of determining a channel response of a communications channel. A computing device receives a data packet via the communications channel and generates a first channel estimation based on a first portion of a preamble of the received data packet. The computing device further generates a second channel estimation based on a second portion of the preamble and determines the channel response of the communications channel based, at least in part, on an average of the first and second channel estimations. For example, the first portion of the preamble may correspond with a Long Training Field (LTF), and the second portion of the preamble may correspond with a Very High Throughput Signal B (VHT-SIG-B) field.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
In a multiple-input, multiple-output (MIMO) system, a wireless node's receive chain demodulation function is enhanced to include phase tracking. VHT Long Training Fields (LTFs) embedded in a frame preamble are used for phase tracking. Single stream pilot tones are added during transmission of VHT-LTFs. A receiver estimates the channel using the pilot tones in a first set of LTFs. A second set of LTFs are used to estimate the phase of the pilot tones using the estimated channel. The phase estimation is continuously applied to other received data tones throughout the VHT-LTFs of data symbols. Phase errors due to PLL mismatches and phase noise are reduced at reception, leading to better signal to noise ratio for different levels of drift and frequency offset. Further, MIMO channel estimation is more accurate, improving the overall wireless network when the accurate MIMO channel estimation data participates in calibration and handshake between wireless nodes.
Abstract:
Methods, systems, and devices are described for detecting dedicated short range communications (DSRC) transmissions to determine whether to use at least a portion of the DSRC spectrum. In one embodiment, a multi-mode device may be operated outside of the DSRC spectrum using a first clock rate, and may then be switched to a second clock rate while operating outside of the DSRC spectrum to detect DSRC transmissions using the DSRC spectrum.
Abstract:
A method and apparatus for improving the accuracy of a round trip time (RTT) estimate between a first device and a second device are disclosed. The method involves calculating an acknowledgement correction factor and a unicast correction factor. These correction factors are used to compensate for symbol boundary time errors resulting from multipath effects.
Abstract:
A wireless device that operates in accordance with the IEEE 802.11 standard receives the preamble of a packet with the highest number of receive chains enabled, thereby obtaining the highest gain, detection sensitivity and range. The wireless device determines a signal-to-noise ratio (SNR) in response to two different short training fields (STFs) in the preamble. The wireless device also determines a modulation and coding scheme (MCS) and a number of spatial streams (Nss) used to transmit the received packet in response to a signal field of the preamble. The wireless device uses these determined parameters to identify a minimum number of the receive chains required to reliably receive the packet. The wireless device uses only the identified minimum number of receive chains to perform channel estimation and receive the data portion of the packet.
Abstract:
A wake-up radio is configured to scan for transmissions while the radio receiver is in sleep mode. The wake-up radio detects incoming RF transmissions intended for the radio receiver by analyzing data frame characteristics in an incoming RF transmission. The data frame characteristics may contain a signature code that is unique to the radio receiver. The signature code may be based on the time duration of a sequence of orthogonal frequency division multiplex (OFDM) symbols received in a clear to send to self (CTS2S) transmission or a time duration of short interframe spaces (SIFS) used to transmit the data frames.