Abstract:
Aspects of the present disclosure relate to methods and apparatus for improving coverage contour and interference thresholds for general authorized access (GAA) channel assignment in a wireless communications environment.
Abstract:
Described features are directed to staggered frequency channel changing for cells of spectrum sharing networks. In some examples users communicating on one or more frequency channels of a spectrum sharing network may receive an indication that those channels are to be vacated, for example that the frequency channels are not to be transmitted on, or otherwise used for communications. Cells of the spectrum sharing network may receive the indication and perform staggered (e.g., sequential or randomly-timed) channel changes. The staggered channel changes may facilitate handover of user devices of the spectrum sharing network by, for example, reducing a number of cells that are simultaneously undergoing a channel change procedure. Thus, staggered frequency channel changing may reduce user service interruptions and radio link failures in a spectrum sharing network.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at a wireless device includes comparing a count of channels used by a group of neighboring cells to a maximum number of channels allowed for use by the group of neighboring cells; identifying a channel list based at least in part on the comparing, where the identified channel list is based at least in part on a list of candidate channels allowed for use by a wireless communication system or a list of the channels used by the group of neighboring cells; and selecting a channel for wireless communication from the identified channel list.
Abstract:
Techniques for prioritizing inter-frequency measurements are disclosed. The method may include identifying a first frequency for measurement that is associated with mobility of an access terminal for transitioning from a serving primary cell to a target primary cell, identifying a second frequency for measurement that is associated with supplemental capacity of the access terminal for adding a secondary cell to operate in conjunction with the serving primary cell, prioritizing the mobility of the access terminal or the supplemental capacity of the access terminal, selecting for measurement in a measurement period either the first frequency or the second frequency based on the prioritizing, and triggering a measurement for the selected frequency.
Abstract:
Methods and apparatuses are provided that include calibrating transmit power of a femto node based on measuring one or more parameters related to usage of the femto node. The femto node can temporarily increase transmit power and analyze received measurement reports to determine a transmit power calibration. The femto node can additionally measure uplink received signal strength indicators over multiple time periods following handover of a user equipment (UE) to determine whether to increase transmit power to cover the UE.
Abstract:
A method and an apparatus for a light active estimation mechanism for backhaul management at a small cell base station are disclosed. For example, the method may include transmitting a first data packet from the small cell base station to a network entity, receiving a second data packet from the network entity in response to the transmission, calculating a time delay between the transmitting of the first data packet and the receiving of the second data packet, and determining whether or not a backhaul of the small cell base station is congested based on the calculated time delay. As such, light active estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
Methods and apparatuses are provided that include calibrating transmit power of a femto node based on measuring one or more parameters related to usage of the femto node. The femto node can temporarily increase transmit power and analyze received measurement reports to determine a transmit power calibration. The femto node can additionally measure uplink received signal strength indicators over multiple time periods following handover of a user equipment (UE) to determine whether to increase transmit power to cover the UE.
Abstract:
Provided are methods and apparatus for selecting a channel to use for communicating. The methods and apparatus select a channel having the least interference and minimize a number of different channels in use. For example, a provided method includes calculating a utility value for each channel in a plurality of channels by weighting, based on a number of the neighborhood small cells (NSC) using each channel in the plurality of channels, both a respective modified non-NSC received signal strength indication (RSSI) and a respective modified reference signal received power (RSRP). The non-NSC RSSI is calculated by subtracting a respective RSRP from a total RSSI. The respective modified RSRP for each channel in the plurality of channels is calculated by applying the respective RSRP to a cumulative distribution function. The channel having the highest or the lowest utility value is chosen as the channel to use for the communicating.
Abstract:
Methods and apparatuses are provided for determining a transmission power cap for one or more devices based at least in part on pathloss measurements to one or more access points received from the one or more devices. A common transmission power cap can also be computed for assigning to devices communicating with an access point, and the transmission power cap for a given device can be adjusted when the transmission power is at or a threshold level from the common power cap to conserve signaling in the wireless network. Adjustment of the transmission power cap can additionally or alternatively be based on a received power at an access point related to signals from the device, an interference report from one or more access points, and/or the like.
Abstract:
Transmit power for an access point is controlled based on measurement reports received by the access point from one or more access terminals that are not currently being served by the access point. In some aspects, transmit power is controlled based on the number of received messages that correspond to a particular event. In some aspects, transmit power is controlled based on the contents of the received messages. For example, the access point may use signal strength information included in the messages to determine a level of transmit power that mitigates interference at a defined subset of reporting access terminals.