Abstract:
The present disclosure relates to methods and devices for wireless communication including an apparatus, e.g., a UE and/or a network node. In one aspect, the apparatus may monitor for at least one SIB1 from a network node. The apparatus may also receive, from the network node, at least one SIB1, the at least one SIB1 being associated with scheduling information for other system information including at least one of a SIB type, an SI periodicity, SI window information, or validity information. The apparatus may also read the at least one SIB1 after reception from the network node, the at least one SIB1 being read once for each modification period of a plurality of modification periods. The apparatus may also decode the at least one SIB1 based on reading the at least one SIB1 once for each modification period.
Abstract:
A delta configuration is signaled for handover of a wireless communication device (e.g., a user equipment, UE) from a first form of connectivity to a second form of connectivity. For example, a UE with master cell group (MCG) connectivity may be handed-over to multiple radio access technology-dual connectivity (MR-DC). In some examples, a UE with standalone (SA) connectivity may be handed-over to non-standalone (NSA) connectivity (e.g., dual connectivity). In conjunction with this handover the UE may be signaled as to whether the UE is to reuse a configuration from the first connectivity mode during the second connectivity mode.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may communicate via a first connection using one or more transmit parameters. The UE may determine to suspend subsequent attempts to communicate via a second connection, in a dual connection mode, based at least in part on satisfaction of a threshold number of failed attempts to communicate via the second connection. The UE may determine one or more parameters for suspension of the subsequent attempts to communicate via the second connection based at least in part on a determination that satisfaction of the threshold number of failed attempts is associated with one or more exposure conditions that are based at least in part on the one or more transmit parameters. Numerous other aspects are provided.
Abstract:
Device-to-device operations are scheduled based on receive and transmit pools that may have a conflict in time domain. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for resolving time domain conflict in device-to-device communication are provided. The apparatus may compute a first block rate metric for a first device-to-device communication on a first frequency and a second block rate metric for a second device-to-device communication on a second frequency. The apparatus may detect a time-domain conflict between the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency. The apparatus may prioritize the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency based on the first block rate metric and the second block rate metric.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus selects a serving cell for connection to a network. The apparatus performs a search for a frequency band on a neighbor cell for use in device-to-device communications. The apparatus performs the device-to-device communications using pre-configured resources associated with the frequency band when the search for the frequency band on the neighbor cell fails. The apparatus performs the device-to-device communications using resources associated with the frequency band of the neighbor cell when the search for the frequency band on the neighbor cell is successful.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may be a UE. The UE receives MBMS in an MBMS session from a base station. The UE determines a data receipt metric associated with data received during the MBMS subframes in the MBMS session. A portion of the MBMS subframes coincides with a measurement gap configured for inter-frequency or inter-RAT measurement. The UE determines whether the data receipt metric is in a first relationship with a first threshold. When the data receipt metric is in the first relationship with the first threshold, the UE refrains from receiving the data during at least the portion of the MBMS subframes that coincides with the measurement gap and performs the inter-frequency or inter-RAT measurement during the measurement gap when the data receipt metric is in the first relationship with the first threshold.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus performs a handover from a source cell to a target cell. The apparatus determines a decoding timer value based on network conditions. The apparatus attempts to decode a MIB or a SIB from the target cell within a time after the handover corresponding to the decoding timer value. The apparatus triggers a radio link failure (RLF) when the MIB or the SIB is not decoded within the time corresponding to the decoding timer value.
Abstract:
Aspects of the present disclosure provide apparatus and techniques for determining one or more operating conditions related to a UE and transmitting a power preference indication (PPI) to an cNB based, at least in part, on the determination. The one or more operating conditions may be related to at least one of a throughput, battery configuration, application data history, or temperature of the UE. In response to the determination, the UE may transmit one of a PPI that is set to or indicates normal power mode or a PPI that is set to low power mode, for example. Additionally, the UE may decide whether or not to delay sending a scheduling request (SR) to the eNB based, at least in part, on the determination.
Abstract:
A UE may camp on a femto cell in an idle mode and determine whether the UE has an interest in receiving an MBMS service from an MBMS cell. When the UE has the interest in receiving the MBMS service, the UE adjusts a priority of the MBMS cell on which the MBMS service is provided or a priority of the femto cell such that the priority of the MBMS cell is higher than the priority of the femto cell. Otherwise, the UE refrains from adjusting the priority of the MBMS cell or the priority of the femto cell.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an MBMS service from a first cell based on first cell MBSFN service configuration information of the first cell. The apparatus switches from being served by the first cell to a second cell. The apparatus attempts to receive the MBMS service from the second cell by utilizing the first cell MBSFN service configuration information prior to obtaining second cell MBSFN service configuration information of the second cell.