Abstract:
Provided are a method and apparatus for transmitting acknowledgement/not-acknowledgement (ACK/NACK) of a user equipment in a carrier aggregation system. The method includes: assigning first and second control regions as search spaces for a specific cell; detecting scheduling information with respect to the specific cell from the first control region and/or second control region; receiving a data channel from the specific cell on the basis of the scheduling information; and transmitting ACK/NACK indicating a reception acknowledgement for the data channel, wherein if the scheduling information is detected from the first control region, the ACK/NACK is transmitted using a radio resource linked to another radio resource used to receive the scheduling information, and wherein if the scheduling information is detected from the second control region, the ACK/NACK is transmitted using a pre-set radio resource through a higher layer signal.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
Provided is a method and an apparatus for transmitting uplink control information by a terminal in wireless communication system. When a PUCCH resource used for transmitting only periodic CSI from a subframe, the resource is a first resource, and a resource indicated by ARI is a second resource, when a setting allows transmitting together ACK/NACK and the periodic CSI through a PUCCH from the same subframe, the first resource and the second resource are mutually exclusive, and the second resource that is used for transmitting together the ACK/NACK and the periodic CSI uses the resource indicated by the ARI from resources determined by an RRC.
Abstract:
A method and apparatus are presented for transmitting acknowledgement (ACK)/negative acknowledgement (NACK) signals in a wireless communication system. ACK/NACKs are spread using spreading codes of a spreading factor, the spreading factor being one of a first spreading factor equal to 2 and a second spreading factor equal to 4. One or more physical hybrid automatic repeat request (ARQ) indicator channel (PHICH) groups allocated in units of four resource elements are transmitted, each PHICH group carrying up to four ACK/NACK signals for the first spreading factor, and up to eight ACK/NACK signals for the second spreading factor. A total number of allocated PHICH groups for the first spreading factor is determined as twice a total number of allocated PHICH groups for the second spreading factor. A PHICH group index for an ACK/NACK is determined using a first function. A spreading code index for the ACK/NACK is determined using a second function.
Abstract:
A technique according to the present specification relates to a method and apparatus for transmitting control information, which support carrier aggregation, through an uplink. Particularly, bits to be transmitted through a physical uplink control channel (PUCCH) are acquired, and at least one channel state information (CSI) bit indicating a wireless channel state and a plurality of ACK/NACK bits related to a plurality of carriers are acquired and transmitted. In addition, the plurality of ACK/NACK bits and the CSI bit are encoded using different Reed-Muller coding blocks (a first Reed-Muller coding block and a second Reed-Muller coding block).
Abstract:
A wireless communication system is disclosed. A method and apparatus for allowing a user equipment (UE) to transmit uplink control information through a physical uplink shared channel (PUSCH) are disclosed. A method for allowing a UE to transmit uplink control information through a PUSCH in a wireless communication system includes receiving configuration information about a plurality of PUSCH feedback modes, identifying information indicating a specific PUSCH feedback mode for the PUSCH by using uplink allocation information for the PUSCH, and transmitting the uplink control information through the PUSCH in accordance with the specific PUSCH feedback mode
Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
A method for transmitting a downlink control channel in a mobile communication system and a method for mapping the control channel to physical resources using a block interleaver are provided. In order to transmit a downlink control channel in a mobile communication system, information bits are modulated to generate one or more modulation symbols according to a specific modulation scheme, the modulation symbols are interleaved using a block interleaver, and the interleaved modulated symbols are mapped to resource elements allocated for transmission of at least one control channel in a subframe, thereby transmitting the at least one control channel.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method of allocating pilot bits in a wireless communication system using a multiple carrier modulation (MCM) is disclosed. The method includes allocating a plurality of precoded data symbols precoded by a precoding matrix module and a plurality of non-precoded pilot bits to a plurality of subcarriers, and transmitting the allocated precoded data symbols and the allocated non-precoded pilot bits.