Abstract:
Disclosed is a solid catalyst component for olefin polymerization. The catalyst component comprises a dialkoxy magnesium carrier, a titanium compound, and a product from an internal electron donor reacting in an inert solvent. Said internal electron donor compound comprises a 2,3-di-non-linear-alkyl-2-cyano succinic acid diester compound as presented in formula I: as in formula I, R1 and R2 radicals are independently chosen from linear or branched C1-C4 alkyl groups; R is chosen from C3-C6 iso-alkyl, sec-alkyl, or cycloalkyl groups. Also disclosed is another solid catalyst component. The catalyst component comprises a dialkoxy magnesium carrier, a titanium compound, and a product from an internal electron donor reacting in an inert solvent. In addition to a 2,3-di-non-linear-alkyl-2-cyano succinic acid diester compound as presented in formula I, the internal electron donor compound can also comprise 2-isopropyl-2-(3-methylbutyl)-1,3-dimethoxy propane and/or a carboxylic ester compound. Also disclosed is a catalyst containing the solid catalyst component. The catalyst is used for olefin polymerization, particularly propylene polymerization, and is relatively active during polymerization. The obtained polymer has the advantages of wide molecular weight distribution, high molecular bulk density, good hydrogen regulation sensitivity, good stereospecificity, good particle shape, and small fine powder content.
Abstract:
A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
Abstract:
Polystyrene blends and methods of making polystyrene blends including combining a styrene monomer and an epoxy-functional comonomer to form a combined mixture, subjecting the combined mixture to polymerization to obtain a polystyrene copolymer and combining the polystyrene copolymer with a biodegradable polymer to obtain a polystyrene blend.
Abstract:
A polymeric composition comprising a polymer and a nucleation agent, and having isotropic shrinkage of less than about 20% and a differential shrinkage of less than about 20%.
Abstract:
Disclosed is a solid catalyst component for olefin polymerization. The catalyst component comprises a dialkoxy magnesium carrier, a titanium compound, and a product from an internal electron donor reacting in an inert solvent. The internal electron donor compound comprises a 2,3-di-non-linear-alkyl-2-cyano succinic acid diester compound as presented in formula I.
Abstract:
Polystyrene blends and methods of making polystyrene blends including combining a styrene monomer and an epoxy-functional comonomer to form a combined mixture, subjecting the combined mixture to polymerization to obtain a polystyrene copolymer and combining the polystyrene copolymer with a biodegradable polymer to obtain a polystyrene blend.
Abstract:
A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
Abstract:
A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
Abstract:
A composition comprising a blend of a polyolefin, polylactic acid, and a reactive modifier. A method of producing an oriented film comprising reactive extrusion compounding a mixture comprising polypropylene, polylactic acid, a reactive modifier to form a compatibilized polymeric blend, casting the compatibilized polymeric blend into a film, and orienting the film. A method of preparing a reactive modifier comprising contacting a polyolefin, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of an epoxy-functionalized polyolefin wherein the epoxy-functionalized polyolefin has a grafting yield of from 0.2 wt. % to 15 wt. %.
Abstract:
A method comprising contacting a polypropylene, an acrylate-containing compound, and an initiator to form a composition, and reactive extruding the composition to form a polymer blend. A method comprising contacting a polypropylene, a multi-functional acrylate monomer, and an initiator to form a composition, reactive extruding the composition to form a reactive extruded composition, and forming the reactive extruded composition into a film wherein the reactive extruded composition has a melt flow rate that is reduced by equal to or greater than 5% when compared to neat polypropylene.