Abstract:
An electronic cassette includes a first radiation detector for still imaging and a second radiation detector for fluoroscopic imaging. The first radiation detector includes a first photo detection device and a luminous device. The luminous device generates visible light by absorbing radiation transmitted through the first photo detection device. The first radiation detector detects the visible light generated by the luminous device. The second radiation detector is constituted by the luminous device and a second photo detection device disposed downstream of the luminous device in an optical path direction of the radiation. The second photo detection device detects the visible light generated by the luminous device. The second radiation detector is changed over to the first radiation detector, so that still imaging can be started by rapid setting during operation of fluoroscopic imaging.
Abstract:
At least one of parallax images for left and right eyes to be fusionally displayed to perform stereopsis using binocular parallax is generated at low resolution or low sharpness of such a degree that a subject in the parallax image is observable as a stereoscopic image when an observer observes the subject in an observation mode in which the two fusionally displayed parallax images are stereoscopically viewable, and also of such a degree that the subject is recognizable as a plane image when an observer observes the subject in an observation mode in which the two fusionally displayed parallax images are not stereoscopically viewable.
Abstract:
In the disclosed radiograph imaging system, the transmission/reception of a signal is possible between on-site communication units and a waiting area communication unit. Also, the waiting area communication unit transmits at least an imaging menu to the on-site communication units.
Abstract:
The radiographic imaging device that configures the disclosed radiographic imaging system has at least a camera that images a main cassette body. Said camera is integrally configured to a radiation source and a control device that controls the main cassette body or is integrally configured to a main radiation source body that houses the radiation source.
Abstract:
A radiation irradiation device includes a device main body that is provided with an irradiation window for emitting radiation; a remote operation unit that is capable of remotely operating the device main body and of which an outer peripheral surface is composed of a plurality of surfaces; and an accommodation portion that is provided in the device main body, accommodates the remote operation unit in a form of being embedded in a main body outer peripheral surface, which is an outer peripheral surface of the device main body, and has a recessed inner wall surface facing an entire surface excluding one surface in the outer peripheral surface of the remote operation unit.
Abstract:
A CT apparatus includes a plurality of imaging units, a rotation mechanism, and a CPU. The imaging unit includes a radiation source and a radiation detector. The rotation mechanism rotates the plurality of imaging units around a body axis of the subject while maintaining a disposition interval. An imaging control unit of the CPU controls operations of the plurality of imaging units and the rotation mechanism. An angular interval that is determined by a frame rate of the radiation detector and a rotation speed of the imaging unit and that defines an acquisition time of a projection image based on the radiation is the same for the plurality of imaging units. The plurality of imaging units have different phases in a rotation direction, and positions where the plurality of imaging units acquire the projection images are separated by a set angle that is less than the angular interval.
Abstract:
A radiography apparatus includes an upright imaging stand that is used for radiography on a subject, a camera as a detection sensor that immediately detects a state of the subject with respect to the upright imaging stand, a tablet terminal, and a reflective member. The tablet terminal displays a notification screen including an image output from the camera. The reflective member reflects the notification screen such that the subject facing the upright imaging stand visually recognizes the image.
Abstract:
A console for a radiography system includes at least one processor configured to execute display-related processing of displaying, at an imaging site, a radiographic image obtained by radiography, the display-related processing including reception processing of receiving the radiographic image from a radiographic image detection device and image processing of processing the received radiographic image to a radiographic image for display, computer aided diagnosis processing on the radiographic image after the image processing, and priority processing of giving priority to the display-related processing over the computer aided diagnosis processing in a case where the display-related processing and the computer aided diagnosis processing compete with each other.
Abstract:
In the radiography system, a camera provided in an X-ray source captures a camera image indicating a usage environment in which an electronic cassette is used. The electronic cassette is inserted into the field of view of the camera. An in-image cassette region of the electronic cassette is detected from the camera image. A cassette ID of the electronic cassette is acquired from the in-image cassette region. The acquired cassette ID is collated with registration information set in a console and a use cassette setting process is performed on the basis of the collation result.
Abstract:
A radiographic image capturing apparatus has a radiation source device including a radiation source for outputting radiation, and a detector device including a radiation detector for detecting radiation that is transmitted through a subject when the subject is irradiated with radiation by the radiation source, and converting the detected radiation into a radiographic image. At least one of the radiation source device and the detector device has an electric power supply limiting unit for limiting supply of electric power, and the electric power supply limiting unit controls supply of electric power between the radiation source device and the detector device, depending on timing of an image capturing process.