Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes a proximity sensor configured to determine a location of a user touch to the shell relative to the location of the heat-rejection element. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the determined location of the user touch relative to the location of the heat-rejection element.
Abstract:
Described embodiments include a portable electronic device. The device includes a shell and a heat-generating component. The device includes a first and a second exterior heat-rejection element. Each heat-rejection element is configured to reject heat received from the heat-generating component into an environment. The device includes a controllable thermal coupler configured to regulate heat transfer to the first and second heat-rejection elements. The device includes a first proximity sensor configured to determine if a user touch to the shell is within a first zone of possible heat discomfort. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the first and second heat-rejection elements. The regulated heat transfer includes adjusting heat rejection away from the first heat-rejection element and toward the second heat-rejection element if the user touch is within the first zone.
Abstract:
A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, a display device, and/or a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may induce the user to move to a desired location and/or to stay within a connectivity area. The hands-free intercom may also or instead induce the user to face in a desired orientation. The directional sound emitter and/or the display device may induce the user by explicitly indicating the desired location, by adjusting an apparent source of the audio or video, by changing quality of delivered audio or video based on user position, by producing irritating audio or video, and/or the like.
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g.).
Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes a proximity sensor configured to determine a location of a user touch to the shell relative to the location of the heat-rejection element. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the determined location of the user touch relative to the location of the heat-rejection element.
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g.).
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g.).
Abstract:
A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, a display device, and/or a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may provide privacy to the user. The hands-free intercom may prevent an eavesdropper from hearing the user's vocal emissions, for example, by canceling the vocal emissions at the eavesdropper's ear. The directional sound emitter may deliver out-of-phase sound to cancel the vocal emissions. The hands-free intercom may also, or instead, cancel ambient noise at the user's ear. The hands-free intercom may measure or predict a filtration of the sound to be canceled and compensate for the filtration when canceling the sound.
Abstract:
A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, and a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may determine whether the user is communicatively coupled via a mobile device to a remote entity. The hands-free intercom may be configured to receive a handoff of the communicative coupling, for example, by acting as a peripheral of the mobile device, by requesting the handoff, and/or the like. The hands-free intercom may be configured to deliver communications from the user to an appliance and vice versa. The hands-free intercom may manage access rights of the various entities to prevent unauthorized communications.
Abstract:
The present disclosure provides systems and methods for generating a haptic sensation, such as a tactile stimuli, using parametric ultrasound on a site of an object. An entertainment device may be associated with a parametric ultrasonic transmitters subsystem configured to transmit first and second ultrasonic pulses that intersect proximate a site of a user and generate an acoustic wave at a beat frequency of the first and second ultrasonic pulses. The beat frequency may be selected such that the generated acoustic wave induces a haptic sensation at the identified site of the user.