Abstract:
A hydraulic control system for a multi-mode hybrid-type power transmission is provided, including an engine-driven main pump in fluid communication with a main regulator valve, and an electrically driven auxiliary pump in fluid communication with an auxiliary regulator valve. A first pressure control solenoid is configured to provide boost pressure to the main regulator valve and thereby boost output of the main pump. A second pressure control solenoid is configured to provide boost pressure to the auxiliary regulator valve and thereby boost output of the auxiliary pump. The distribution of boost pressure from the pressure control solenoids is selectively modified such that at least one of the flows of pressurized fluid from the pumps is equal to the current line pressure requirements of the transmission during engine auto-start and auto-stop, and transitions thereto. An improved method for regulating the hydraulic control system is also provided.
Abstract:
Substrates prone to heat distortion may be coated with a coating composition containing chlorinated polyolefin-modified acrylic latex emulsion, polyurethane dispersion, non-gelling self-crosslinking acrylic emulsion, and glycol-based solvent. The coating composition contains sufficient non-gelling self-crosslinking acrylic emulsion and glycol-based solvent so that a 0.1 mm wet thickness layer of the coating composition will form a tack-free film when heated at 65° C. for fifteen minutes, and the glycol-based solvent is selected so that the coating composition is shelf stable.
Abstract:
A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to at least one of the clutches.
Abstract:
A servo valve for shifting a transmission between a park and out of park position includes a valve housing and a park servo. A first and second solenoid is disposed in the valve housing for transmitting a respective first or second signal to shift the transmission to the respective first or second state of operation. The park servo is fluidly connected to the transmission and is responsive to the first and second signals to shift the transmission to the respective positions. Fluid pressure within the valve housing moves a valve member therein to move a piston within the park servo to shift the transmission to the corresponding position. A third solenoid transmits a third signal in combination with the second signal to latch and hold the valve member in the corresponding position.
Abstract:
A method and apparatus for efficiently cooling and lubricating rotating components in a hybrid transmission is provided. By efficiently managing cooling flow to and between the rotating elements, flow requirements and associated pumping requirements within the drive unit are minimized. In addition, by providing a method for placing the fluid directly on the required components, spin losses associated with component contact with stray oil are reduced. Combined, the reduction in pumping and spin losses create a more efficient drive unit and an overall more efficient hybrid drive system which directly leads to higher fuel economy.
Abstract:
A method of separating soap fibers from the liquid phase component of grease to prepare the fibers for microscopic analysis includes the steps of admixing a sample of the grease with a solvent to remove the liquid phase component from the fibers and provide a final liquid product having the fibers in suspension therein, contacting the final product with a pair of spaced electrodes, applying a direct voltage across the electrodes to charge the same positive and negative respectively, and withdrawing for analysis a small quantity of the final product from a region thereof proximate the negative electrode after the voltage has been applied for a predetermined energization period. The withdrawn quantity may be deposited on a polished carbon stub and further prepared for analysis by a scanning electron microscope.
Abstract:
A rotating clutch operably disposed between two rotating components includes a hydraulic operator having a piston and, on one side of the piston, an apply chamber or cavity and, on the opposite side of the piston, a balance chamber or cavity. The apply chamber is selectively provided with pressurized hydraulic fluid to engage and release the clutch to couple and de-couple the two rotating components. The balance chamber is provided with a flow of pressurized hydraulic fluid from the transmission lubrication system that flows through the transmission main shaft and flow restricting passages to the balance chamber. An exhaust port downstream of the balance chamber releases excess hydraulic fluid flow. Thus, whether, the clutch is rotating or not, hydraulic pressure is maintained in the balance chamber and proper clutch operation is assured.
Abstract:
A method for controlling an electromechanical transmission includes monitoring a current hydraulic circuit oil temperature, monitoring a current state of flow management valves, monitoring a command for cooling of electric machines, monitoring a desired transmission operating range state, utilizing a state machine to determine a sequence for controlling positions of the flow management valves to achieve the desired transmission operating range state based upon the monitored properties.
Abstract:
A transmission includes two blocking valves that control fluid pressure to a plurality of clutches. The blocking valves are characterized by a plurality of states that result in at least three transmission operating conditions. Each of the three operating conditions is characterized by fluid pressure being unavailable to a respective one of the plurality of clutches.
Abstract:
A transmission includes first, second, third, and fourth clutches, first and second shift valves, and first, second, third, and fourth trim valves. Each trim valve is operative to control fluid pressure to a respective one of the first, second, third, and fourth clutches. The transmission also includes a controller. The controller is electrically operatively connected to the first and second shift valves and the first, second, third, and fourth trim valves to selectively provide a first clutch configuration for operating in a first mode and a second clutch configuration for operating in a second mode. The transmission also includes a clutch control mechanization for selectively moving the clutch configuration to a default position in the event power to the transmission is lost.