Abstract:
A method of forming a writable erasable area on an object includes selecting a glass sheet having a front surface and a back surface, where the front surface is opposed to and parallel to the back surface. An area of the object where the writable erasable area is to be located is selected. The selected area has a select non-flat shape. The shape of the glass sheet is conformed to the select non-flat shape. The glass sheet is then mounted on the object such that the glass sheet is located at the selected area of the object and conforms in shape to the selected area of the object.
Abstract:
Foldable substrates have a first portion, a second portion, and a central portion positioned therebetween with a first transition region having a first central surface area of the central portion with a first average angle. In aspects, the first average angle is from about 176.10 to about 179.9° or from about 177.0° to about 179.9°. In aspects, a polymer angle is from 178.3° to about 179.9° or from about 179.10 to about 179.9°. Methods comprise disposing an etch mask over the first major surface of the foldable substrate before etching the foldable substrate. In aspects, the etch mask comprises a first polymer layer positioned between a first barrier layer and the first major surface. In aspects, the etch mask comprises a plurality of ink-jet printed shapes. Methods of measuring a contrast ratio comprise impinging a transparent apparatus with a collimated beam.
Abstract:
Embodiments of a deadfront article are provided. The deadfront article includes a substrate having a first surface and a second surface. The deadfront article also includes a semi-transparent layer disposed onto the second surface of the substrate. The semi-transparent layer has a region of a solid color or of a design of two or more colors, and the semi-transparent layer has a first optical density. Further, the deadfront article includes a contrast layer disposed onto the region. The contrast layer is configured to enhance visibility of the color(s) of the semi-transparent layer.
Abstract:
Deadfront articles that include a tactile element formed on a first surface of a substrate and a visual element disposed on a second surface of the substrate opposite the first surface. The tactile element is positioned on the first surface of the substrate in a complimentary fashion to the visual element disposed on the second surface of the substrate. The tactile element may include a surface roughness portion having a surface roughness different than the surface roughness of an area bordering the surface roughness portion. The deadfront articles may be incorporated into an automobile interior to provide a visual and haptic display interface for a user.
Abstract:
Embodiments of an image panel are provided. The image panel includes a transparent substrate having a first major surface and a second major surface opposite the first major surface. A first image layer is disposed on the second major surface. A diffuser layer is disposed on the first image layer, and a second image layer is disposed on the diffuser layer. The second image layer includes mask regions and image regions. An optical density of the image panel is at least 3.0 in the mask regions and less than 3.0 in the image regions. The image regions are not visible from the first major surface when light is not incident upon the second major surface. The image regions are visible from the first major surface and form a composite image with the first image layer when light is incident upon the second major surface.
Abstract:
An article includes a substrate; a first layer disposed on the first major surface of the substrate, wherein the first layer has an adherence to the substrate of greater than or equal to 4B according to a cross hatch adhesion test set forth in ASTM D3359-17; and at least one ink layer disposed on the first layer having a surface roughness Ra greater than or equal 50 nm to provide a textured surface. Also disclosed is an article a substrate a coating disposed on the first major surface, wherein the coating has an adherence to the substrate of greater than or equal to 4B according to a cross hatch adhesion test set, a gauge hardness greater than or equal to 4H according to a pencil test, and a scratch hardness greater than or equal to 3H according to a pencil test set.
Abstract:
Foldable apparatus can comprise a foldable substrate comprising a thickness (T) and a plurality of grooves extending through a first major surface. A groove spacing (Gs) is defined between a pair of grooves. A first groove of the plurality of grooves comprises a groove depth (Gd) and a groove width (Gw). In some embodiments, 7.93-6.19*(Gw/T) −9.52*(Gd/T) +6.05*(Gs/T)
Abstract:
Deadfront articles that include a tactile element formed on a first surface of a substrate and a visual element disposed on a second surface of the substrate opposite the first surface. The tactile element is positioned on the first surface of the substrate in a complimentary fashion to the visual element disposed on the second surface of the substrate. The tactile element may include a surface roughness portion having a surface roughness different than the surface roughness of an area bordering the surface roughness portion. The deadfront articles may be incorporated into an automobile interior to provide a visual and haptic display interface for a user.
Abstract:
Methods and apparatus provide for an improved visual and optionally tactile features on a visible element of an article, such as a consumer electronic device (e.g., a mobile electronic device, a mobile phone, a smartphone, a tablet, a phablet, a notebook computer, a laptop, etc.).
Abstract:
A light diffusing component is disclosed. The light diffusing component comprises a substrate, such as glass, having a frontside, a backside spaced apart from the frontside, and an edge configured to receive a light source. The glass sheet includes at least one scattering layer having a plurality of light scattering centers etched into at least a portion of the frontside of the glass sheet. The scattering centers have an increased density as the distance from the edge increases and the scattering centers are randomly distributed in size and smaller than about 200 μm. Also disclosed is a method of manufacturing a light diffusing component comprising masking a substrate, such as a glass sheet, and etching the substrate such that the density of the resulting scattering centers increased as the distance from the light source increases.